• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Insilico’s Chemistry42 AI system integrated into UCB’s drug discovery programs

Bioengineer by Bioengineer
March 9, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Insilico Medicine announces that UCB will integrate its AI-based system for de novo molecular design, Chemistry42™, into its drug discovery programs

IMAGE

Credit: Insilico

WHAT:

Approximately two years after establishing a human cerebral organoid system to study Creutzfeldt-Jakob disease (CJD), National Institutes of Health researchers have further developed the model to screen drugs for potential CJD treatment. The scientists, from NIH’s National Institute of Allergy and Infectious Diseases (NIAID), describe their work in Scientific Reports.

Human cerebral organoids are small balls of human brain cells ranging in size from a poppy seed to a pea; scientists use human skin cells to create them. CJD, a fatal neurodegenerative brain disease of humans caused by infectious prion proteins, affects about 1 in 1 million people each year. It can arise spontaneously, result from a hereditary mutation within the prion gene, or arise due to infection, for example, from eating contaminated meat products. A notable example of this occurred in the United Kingdom in the mid-1990s following an outbreak of bovine spongiform encephalopathy in cattle. There are no preventive or therapeutic treatments for CJD.

The lack of a completely human CJD model has been a considerable barrier hindering the discovery of potential therapies. Studies in mice have failed to identify treatments that were then effective when tried in patients. The human cerebral organoid CJD model holds promise that this barrier can be eliminated. Cerebral organoids have organization, structure, and electrical signaling systems similar to human brain tissue. Because they can survive in a controlled environment for months to years, cerebral organoids also are ideal for studying nervous system diseases over lengthy periods of time. Cerebral organoids have been used as models to study Zika virus infection, Alzheimer’s disease, and Down syndrome.

The CJD study was conducted at NIAID’s Rocky Mountain Laboratories in Hamilton, Montana. Scientists tested pentosan polysulfate (PPS) to determine its potential preventive and therapeutic benefits. In the experiments, PPS treatment reduced the disease indicators by 10-fold or more without causing tissue death. PPS is a benchmark anti-prion compound in laboratory experiments, but it is rarely used clinically because it requires direct administration into the brain.

While it may extend a patient’s life, PPS has not been shown to improve quality of life. However, using the anti-prion properties of PPS with the new human organoid CJD model allowed the researchers to assess the value of this model system for drug discovery. The scientists showed that the human organoid model can be used to screen compounds that may be useful for preventive treatment. Such treatment could be used for people carrying genetic mutations that cause the disease, but who have not yet developed symptoms, or for people who may have been exposed to infectious prion proteins that might cause CJD. The model further proved useful for screening drugs against established CJD after a patient is diagnosed and starts showing symptoms of disease.

The scientists are working to expand the organoid model for screening larger numbers of novel drug candidates. Their goal is to find treatment options for people who are susceptible to CJD because of their genetics or who accidentally are exposed, as well as for those who develop sporadic disease. They are optimistic that with their fully human model of disease, they can now identify compounds with promise for benefitting patients with CJD.

###

ARTICLE:

B Groveman and NC Ferreira et al. Human cerebral organoids as a therapeutic drug screening model for Creutzfeldt-Jakob Disease. Scientific Reports DOI: 10.1038/s41598-021-84689-6 (2021).

WHO:

Cathryn Haigh, Ph.D., an investigator in NIAID’s Laboratory of Persistent Viral Diseases, is available to comment on this study.

CONTACT:

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, [email protected].

NIAID conducts and supports research–at NIH, throughout the United States, and worldwide–to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation’s medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH…Turning Discovery Into Health®

Media Contact
Polly Firs
[email protected]

Tags: AgingBiochemistryBioinformaticsBiotechnologyGerontologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Microbiome Cell-Free RNA Differentiates Colorectal Cancer

July 8, 2025
blank

Evolving Deaminase Hotspots for Precise Cytosine Editing

July 7, 2025

Linking Body, Behavior to Atherogenic Risk Ratio

July 5, 2025

FGF13 Shields Neurons to Halt Age-Related Hearing Loss

July 5, 2025
Please login to join discussion

POPULAR NEWS

  • Zheng-Rong Lu

    Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    75 shares
    Share 30 Tweet 19
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    72 shares
    Share 29 Tweet 18
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    69 shares
    Share 28 Tweet 17
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microbiome Cell-Free RNA Differentiates Colorectal Cancer

Evolving Deaminase Hotspots for Precise Cytosine Editing

HIV-1 Nuclear Entry Hinges on Capsid and Pore

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.