• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, December 6, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Insilico Medicine discovers novel dual targets for aging and disease using Microsoft BioGPT

Bioengineer by Bioengineer
September 27, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As the cornerstone of popular chatbots including GPT-4, large language models (LLMs) trained on vast amounts of text data have been contributing to advances in diverse fields including literature, art, and science, but their potential in the complex realms of biology and genomics has yet to be fully unlocked. 

The intersection of aging and disease

Credit: Insilico Medicine

  • Based on Microsoft BioGPT, Insilico Medicine’s R&D team proposed a novel approach for predicting therapeutic targets using a large language model (LLM) specifically trained for biomedical tasks; 
  • A total of 9 potential dual-purpose targets against aging and 14 major age-related diseases were discovered, with CCR5 and PTH nominated as novel targets for anti-aging;
  • Apart from target selection, the method can be applied to extensive ranking tasks, even without clear criteria.

As the cornerstone of popular chatbots including GPT-4, large language models (LLMs) trained on vast amounts of text data have been contributing to advances in diverse fields including literature, art, and science, but their potential in the complex realms of biology and genomics has yet to be fully unlocked. 

Insilico Medicine, a clinical-stage generative artificial intelligence (AI)-driven drug discovery company announced that the company has utilized the connection retrieval ability of Microsoft BioGPT to identify 9 potential dual-purpose targets against both the aging process and 14 major age-related diseases. Two of the proposed genes have not been previously correlated to the aging process, indicating the potential of Transformer models in novel target prediction and other ranking tasks across the biomedical field. The findings were published in the journal Aging. 

According to recent publications, the majority of LLMs are trained on the continuation of texts, and work by suggesting the next word possible depending on the connection and probability distribution extracted from the context. Given a plausible prompt and adequate background data, scientists can now apply LLMs, especially specialized models, to the target prioritization process.

BioGPT, the domain-specific generative Transformer language model, was jointly proposed by Microsoft Research and Peking University in China. Pre-trained on millions of previously published biomedical research articles, the model outperformed previous models in multiple biomedical natural language processing tasks and demonstrated human parity in analyzing biomedical research to answer questions.

To further enhance the performance of BioGPT, Insilico researchers used a dataset of 900,000 grant proposals from the National Institutes of Health for training, and evaluated the effect through log fold change of enrichment (ELFC) and hypergeometric p-value (HGPV) scores. Next, the team established a target discovery pipeline including the prompt, retrieval probability of tokens, and gene probability calculation.

Using the final prompt sentence of “human gene targeted by a drug for treating {DISEASE} is the,” and the general tokenizer from BioGPT, the researchers proposed 9 potential targets after several cycles of probability retrieval. In the end, 5 targets were nominated as dual-purpose targets against aging and all 14 age-related diseases including Alzheimer’s disease, amyotrophic lateral sclerosis, and idiopathic pulmonary fibrosis. Both CCR5 and PTH are considered novel age-related targets.

“I am thrilled to see this breakthrough based on LLMs presented by the Insilico team, as it highlights the potential of a Transformer and generative AI approach combined with specific databases,” says Alex Zhavoronkov, PhD, founder and CEO of Insilico Medicine. “We hope to further accelerate drug R&D processes using our proprietary Pharma.AI platform in this era of biotech paradigm change.” 

“BioGPT can learn and understand large amounts of medical literature, thereby empowering practical processes including novel drug research and development, medical knowledge graph development, precision medicine, and medical dialogue assistance systems, and driving new biotechnology developments,” said Tao Qin, PhD, Senior Principal Researcher at Microsoft Research AI4Science. “The research results released by Insilico Medicine shed light on new practical application scenarios for BioGPT and other LLM-based AI engines. We look forward to further real-world applications and more breakthroughs.”

A leader in generative AI for drug discovery, Insilico Medicine has established and validated its proprietary end-to-end Pharma.AI platform across target discovery, small molecule generation, and clinical trial design. Recently, the company published the validation results of inClinico in Clinical Pharmacology and Therapeutics, where the Transformer-based clinical trial prediction tool achieved 79% accuracy in prospective validation.

 

About Insilico Medicine

Insilico Medicine, a clinical-stage end-to-end artificial intelligence (AI)-driven drug discovery company, connects biology, chemistry, and clinical trials analysis using next-generation AI systems. The company has developed AI platforms that utilize deep generative models, reinforcement learning, transformers, and other modern machine learning techniques to discover novel targets and to design novel molecular structures with desired properties. Insilico Medicine delivers breakthrough solutions to discover and develop innovative drugs for cancer, fibrosis, immunity, central nervous system (CNS), and aging-related diseases. For more information, visit www.insilico.com 

 



Journal

Aging-US

DOI

10.18632/aging.205055

Article Title

Biomedical generative pre-trained based transformer language model for age-related disease target discovery

Article Publication Date

22-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Risky behavior

‘Friendly’ hyenas are more likely to form mobs

December 5, 2023
In the study, the researchers analyzed mouse neural progenitor cells prior to placental-derived extracellular vesicles treatment.

Small but mighty: Microparticles from the placenta may offer major clues on the in utero development of neurobehavioral disorders

December 5, 2023

Florida wildflowers and pollinators get a boost with two grants

December 5, 2023

American Eel as an emerging consumer target

December 5, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Researchers redesign future mRNA therapeutics to prevent potentially harmful immune responses

The ocean may be storing more carbon than estimated in earlier studies

First map of human limb development reveals unexpected growth processes and explains syndromes found at birth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In