• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Insects inspire greener, cheaper membranes for desalination

Bioengineer by Bioengineer
July 1, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2019 Ivan Gromicho

A new membrane made from water-wet materials has specially designed gas-entrapping pores that allow it to simultaneously separate hot, salty from cool, pure water while facilitating the transfer of pure vapor from one side to the other. This principle, designed by KAUST researchers, could lead to greener, cheaper desalination membranes.

Currently, super-water-repellent perfluorocarbon membranes are popularly used for a desalination process known as membrane distillation (MD). But perfluorocarbons are expensive, nonbiodegradable and vulnerable to fouling and damage at higher temperatures, explains KAUST postdoctoral fellow Ratul Das.

With the aim of developing perfluorocarbon-free alternatives, Himanshu Mishra and his team of researchers at KAUST’s Water Desalination and Reuse Center drew inspiration from two insects: springtails that live in wet soils and seaskaters that live in open oceans. Both have mushroom-shaped microtextures covering their cuticles and hairs that can spontaneously entrap life-sustaining air if the insects become submerged in water. “We mimicked those features onto water-wet (nonwater resistant) materials. The resulting surfaces robustly entrap air upon immersion in liquids. The idea of gas-entrapping membranes was born,” says Mishra.

Mishra’s team developed protocols for creating vertical pores within thin sheets. The diameters of the pore inlets and exits were abruptly smaller than the pore channels. “We began by toying with thin wafers of silicon to develop pores with these reentrant edges,” says Mishra. “These edges prevent liquids from intruding into the pores,” he explains. “We were able to achieve the function of perfluorinated membranes by harnessing this bio-inspired texture using water-wet materials, which might seem to defy conventional wisdom.” When a silicon membrane with simple cylindrical pores is immersed in water, it is completely filled within 1 second. Silica gas-entrapping membranes (GEMs), on the other hand, trap air robustly within their pores when immersed in water, and can remain intact for more than six weeks.

The team then explored applying the same principle to a cheaper, easily manufactured water-wet material called poly(methyl methacrylate) (PMMA), explains Sankara Arunachalam, a research technician in Mishra’s team. “PMMA-GEMs robustly separated streams of hot, salty feed from cold water for more than 90 hours with a salt rejection of 100 percent,” he says.

“To our knowledge, this is the first-ever demonstration of MD membranes derived from intrinsically wetting materials,” says Mishra. “The benefits are obvious: common water-wet plastics, such as PMMA, are significantly cheaper than perfluorinated ones, are environmentally friendly, and can withstand harsher operational conditions. Interdisciplinary investigations are needed to assess the scalability and reliability of this approach.”

The findings could unlock the potential of common water-wet materials for greener, cheaper desalination.

###

Media Contact
Carolyn Unck
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/857/insects-inspire-greener,-cheaper-membranes-for-desalination

Related Journal Article

http://dx.doi.org/10.1016/j.memsci.2019.117185

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyHydrology/Water ResourcesIndustrial Engineering/ChemistryMaterialsPollution/RemediationTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multidrug-Resistant Bacteria from Conflict Zone Hospitals Spread Internationally

Catalytic Enantioselective Synthesis of Alkylidenecyclopropanes

Human-Specific Genes, Shared Processes in Adult Neurogenesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.