• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Improving quantum dot interactions, one layer at a time

Bioengineer by Bioengineer
November 20, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells.

IMAGE

Credit: DaeGwi Kim, Osaka City University

Osaka City University scientists and colleagues in Japan have found a way to control an interaction between quantum dots that could greatly improve charge transport, leading to more efficient solar cells. Their findings were published in the journal Nature Communications.

Nanomaterials engineer DaeGwi Kim led a team of scientists at Osaka City University, RIKEN Center for Emergent Matter Science and Kyoto University to investigate ways to control a property called quantum resonance in layered structures of quantum dots called superlattices.

“Our simple method for fine-tuning quantum resonance is an important contribution to both optical materials and nanoscale material processing,” says Kim.

Quantum dots are nanometer-sized semiconductor particles with interesting optical and electronic properties. When light is shone on them, for example, they emit strong light at room temperature, a property called photoluminescence. When quantum dots are close enough to each other, their electronic states are coupled, a phenomenon called quantum resonance. This greatly improves their ability to transport electrons between them. Scientists have been wanting to manufacture devices using this interaction, including solar cells, display technologies, and thermoelectric devices.

However, they have so far found it difficult to control the distances between quantum dots in 1D, 2D and 3D structures. Current fabrication processes use long ligands to hold quantum dots together, which hinders their interactions.

Kim and his colleagues found they could detect and control quantum resonance by using cadmium telluride quantum dots connected with short N-acetyl-L-cysteine ligands. They controlled the distance between quantum dot layers by placing a spacer layer between them made of oppositely charged polyelectrolytes. Quantum resonance is detected between stacked dots when the spacer layer is thinner than two nanometers. The scientists also controlled the distance between quantum dots in a single layer, and thus quantum resonance, by changing the concentration of quantum dots used in the layering process.

The team next plans to study the optical properties, especially photoluminescence, of quantum dot superlattices made using their layer-by-layer approach. “This is extremely important for realizing new optical electronic devices made with quantum dot superlattices,” says Kim.

Kim adds that their fabrication method can be used with other types of water-soluble quantum dots and nanoparticles. “Combining different types of semiconductor quantum dots, or combining semiconductor quantum dots with other nanoparticles, will expand the possibilities of new material design,” says Kim.

###

We are Osaka City University – the oldest research university in Osaka. With 9 undergraduate faculties and 11 graduate schools all dedicated to making urban life better, energy cleaner, and people healthier and happier, we have won numerous awards and have produced 2 Nobel laureates. For more information, please visit our website at https://www.osaka-cu.ac.jp/en

Media Contact
James Gracey
[email protected]

Original Source

https://www.nature.com/articles/s41467-020-19337-0

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19337-0

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Assessing Drug Interactions in Neonatal Care Software

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.