• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Improving long-term climate calculations

Bioengineer by Bioengineer
January 19, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new method reduces uncertainties in computer model estimations of climate change over thousands of years.

IMAGE

Credit: TiPES/HP

Climate researchers have found a simple but efficient way to improve estimations of ultimate global warming from complex climate models. The finding is relevant for the evaluation and comparison of climate models and thus for accurate projections of future climate change – especially beyond the year 2100. The study is published in Geophysical Research Letters by Dr. Robbin Bastiaansen and colleagues at the Institute for Marine and Atmospheric Research Utrecht, Utrecht University, The Netherlands. The work is part of the European TiPES project coordinated by the University of Copenhagen, Denmark.

Complex climate models are rarely used to simulate the effect of global warming for a given amount of CO2 beyond a couple of centuries into the future. The reason for this is twofold. First, even on a supercomputer, such a model must already run for months to obtain a 150-year projection; reaching the end of a long simulation is therefore not practical. Second, policymakers are mainly concerned about how much climate change a given amount of CO2 will cause within the coming decades.

Earth warms for more than 1000 years

In the real world, however, temperatures continue to go up for more than a thousand years after CO2 is added to the Earth system. A typical climate model simulation therefore estimates less than half of the summed global warming. That is a challenge because, in order to improve models, it is necessary to compare and evaluate models. The final global mean temperature from a given amount of CO2 is an important parameter in the evaluation of a model.

The traditional way of solving this problem is to take the two most predominant results (called observables) from the simulation of the first 150 years and use these to estimate at which global mean surface temperature a full simulation would have ended. The two observables most often used are the global mean surface temperature and the radiation imbalance at the top of the atmosphere. This leads to a rather good estimation but the approach introduces considerable uncertainty – mainly underestimating total global warming.

More accurate estimates

However, an advanced climate model produces a multitude of other data on, for example future ocean currents, weather patterns, sea ice extend, ground color, climate belts, precipitation, and many more.

“And what we did, was add another observable on top of the two traditional ones. That is the idea. If you use additional observables, you will improve estimates over longer time scales. And our work is proof that this is possible,” explains Dr. Robbin Bastiaansen.

In the best-case scenario, the new method halved the uncertainty compared to traditional methods.

The work is expected to be useful in assessing tipping points in the Earth system, as studied in the TiPES project, funded by the EU Horizon 2020.

###

Media Contact
Henrik Prætorius
[email protected]

Original Source

https://doi.org/10.1029/2020GL091090.

Related Journal Article

http://dx.doi.org/10.1029/2020GL091090.

Tags: Climate ChangeClimate ScienceEarth ScienceGeophysics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

October 23, 2025
Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

October 23, 2025

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

October 22, 2025

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    158 shares
    Share 63 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Coral Phylogeny Unveils Ancient Resilience, Risks

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

New Study Demonstrates AI’s Potential to Deliver Safe Treatment Guidance for Opioid Use Disorder During Pregnancy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.