• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Illumination of abnormal neuronal activities caused by myelin impairment

Bioengineer by Bioengineer
October 11, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Suggests possible contribution to learning deficits

IMAGE

Credit: Kobe University


The neural circuit basis for motor learning tasks when myelination is impaired has been illuminated for the first time by an international collaboration of university research teams. They also succeeded in compensating for the impaired motor learning process by pairing appropriate actions with brain photo-simulation to promote synchronization of neuronal activities. This could contribute to future treatments for neurological and psychiatric diseases in which white matter function is impaired.

The research was carried out by Assistant Professor Daisuke Kato and Professor Hiroaki Wake (Kobe University Graduate School of Medicine, Japan), Professor Junichi Nabekura (National Institute of Physiological Sciences, Japan), Dr. R Douglas Fields (National Institutes of Health, USA) and Professor Masanori Matsuzaki (Tokyo University Graduate School of Medicine, Japan).

The results were first published in the journal ‘GLIA‘.

Introduction:

Myelin is sheath that forms around axons, regulating the speed of electrical impulses and efficiently transmitting them among the neurons. Myelinated bundles act as cables to connect distant brain regions. Once myelination is impaired or the myelin is damaged, the propagation of impulses in the neurons slows down or is dysregulated. This impaired regulation has been linked to abnormal activity in neuronal populations, resulting in learning deficits and aging (particularly in dementia and Alzheimer’s disease). The resulting changes in white matter have been observed in the MRI scans of patients with Alzheimer’s. However, it is still poorly understood how exactly impaired myelination affects the circuit properties of the brain that are important for learning and cognition.

This research showed that impaired myelination causes uncoordinated or asynchronous electrical impulse transmission between neurons. Impaired myelination was shown to have an adverse effect on motor learning in mice, suggesting that coordinated transmissions are vital for effective learning.

Research Methodology:

The population activity of neurons in the primary motor cortex of mice with myelin impairments was measured during a motor learning activity usingin vivotwo photon microscopy. Mice with head plates were inserted into body chambers. The mice were trained to pull and hold a lever that would dispense drops of water. Mouse behavior was monitored by infrared video camera. In the early stages of training there was no difference in the performance between myelin impaired mice and control mice. However, in the later stage of training the myelin impaired mice had a lower success rate in performing the task, although the amount of attempts was similar. Although this suggests their motivation levels were the same, the myelin deficit made it more difficult for the mice improve their performance of this task. It also reduced the accuracy of their movements and increased the spontaneous activities of neuronal population.

Through analyzing the activity of the neurons of myelin impaired mice, they showed that asynchronous activity in the thalamocortical axons correlated with impaired task performance. Thalamocortical axons are nerve fibers connecting the thalamus and cerebral cortex of the brain which carry nerve cells’ information. Electrical stimulation of the motor cortex (output area) during the lever pull task was utilized to promote synchronous activity of neurons in motor cortex and to try to compensate for the performance of the mice. This promoted synchronous activity in the thalamocortical axons during learning and improved the success rate of the mice with myelin impairment.

Conclusions:

The findings of this research illuminate how pathological neuronal circuit activity is affected by impaired myelination. The results also suggest that it may be possible to pair noninvasive brain simulation with relevant behaviors to correct cognitive and behavioral abnormalities in the early stages of diseases with impaired white matter.

###

Glossary:

Thalamocortical axons: are nerve fibers connecting the thalamus and cerebral cortex of the brain which carry nerve cells’ information.

Oligodendrocytes: are specialized brain cells responsible for the myelination in the central nervous system. They are vital to neuron survival.

Acknowledgements:

This research was supported by MEXT (Ministry of Education, Culture, Sports, Science and Technology), JST (Japan Science and Technology Agency) and AMED (Japan Agency for Medical Research and Development).

Media Contact
Verity Townsend
[email protected]
81-788-035-282

Original Source

http://www.kobe-u.ac.jp/research_at_kobe_en/NEWS/news/2019_10_10_01.html

Related Journal Article

http://dx.doi.org/10.1002/glia.23713

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Dr. Harolyn Belcher Honored with 2026 David G. Nichols Health Equity Award by American Pediatric Society

November 4, 2025

Microsimulation Reveals Risk Factors Impacting Major Illness

November 4, 2025

Neonatal Nurse Practitioners: Key Players in Newborn Care

November 4, 2025

Comorbidities in Type 2 Diabetes Patients in Nepal

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing V4+ Stability in Zinc-Ion Batteries

Dr. Harolyn Belcher Honored with 2026 David G. Nichols Health Equity Award by American Pediatric Society

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.