• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

How to reset a diseased cell

Bioengineer by Bioengineer
May 2, 2015
in Bioengineering
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers demonstrate the ability to tune medically relevant cell behaviors by manipulating a key hub in cell communication networks. The manipulation of this communication node, reported in this week’s issue of Proceedings of the National Academy of Sciences, makes it possible to reprogram large parts of a cell’s signaling network instead of targeting only a single receptor or cell signaling pathway.

The potential clinical value of the basic science discovery is the ability to eventually develop techniques – drugs or gene therapy approaches, for example – that could slow or reverse the progression of diseases, such as cancer, which are driven by abnormal cell signaling along multiple upstream pathways.

“Our study shows the feasibility of targeting a hub in the cell signaling network to reset aberrant cell signaling from multiple pathways and receptors,” said senior author Pradipta Ghosh, MD, an associate professor of medicine.

Specifically, the UC San Diego team has engineered two peptides – protein fragments – to either turn on or turn off activity in a family of proteins called G proteins.

G protein-coupled receptors, commonly found on the surface of cells, enable cells to sense and respond to what is happening around them. About 30 percent of all prescription drugs affect cells via G protein-coupled receptors.

Researchers, including members of the UC San Diego team, recently discovered that G proteins can also be activated inside cells – not just on cell membranes – by other receptors, including a protein called GIV. Its activity is implicated in cancer metastasis and other disease states. Both the “on” and “off” peptides were made from a piece of the GIV protein receptor.

In a series of cell culture experiments, the “on” peptides were shown to accelerate cells’ ability to migrate after scratch-wounding, a process linked to wound healing. The “off” peptide, in contrast, reduced the aggressiveness of cancer cells and reduced the production of collagen by cells associated with liver fibrosis. In experiments with mice, the topical application of the “on” peptides helped skin wounds heal faster.

“The takeaway is that we can begin to tap an emerging new paradigm of G protein signaling,” Ghosh said.

Story Source:

The above story is based on materials provided by University of California, San Diego School of Medicine.

Share12Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Normothermic Perfusion in Organ Donation Strategies

Empagliflozin’s Effects on Cardiovascular and Renal Health

Modeling Child Height Prediction in Growth Disorders

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.