• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

High-speed holographic fluorescence microscopy system with submicron resolution

Bioengineer by Bioengineer
January 29, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The group has realized a scanless 3D imaging system and an algorithm for high-speed measurement

IMAGE

Credit: National Institute of Information and Communications Technology (NICT), Tohoku University, Toin University of Yokohama,
Japan Science and Technology Agency (JST)

[Abstract]

The National Institute of Information and Communications Technology (NICT), Tohoku University, Toin University of Yokohama, and Japan Science and Technology Agency (JST) have succeeded in developing a scanless high-speed holographic fluorescence microscopy system with submicron resolution for a 3D space. The system is based on digital holography. The developed microscopy system has an algorithm to acquire 3D information of fluorescent objects toward scanless 3D measurement in less than 1 millisecond. Scanless 3D sensing with submicron resolution and color-multiplexed holographic fluorescence imaging have been demonstrated using the algorithm. The microscopy system will be further developed to achieve holographic 3D motion-picture sensing of specimens with incoherent light.

This achievement was published in Optics Letters as an open-access paper on January 29, 2021.

[Achievements]

The scanless high-speed holographic fluorescence microscopy system shown in Figure 1 was constructed. The system is based on digital holography and is applicable to the sensing of incoherent light such as fluorescence light and natural light. The developed algorithm enables the adoption of a phase modulator to generate two phase values, which is expected to increase the measurement speed. Submicron resolution for a 3D space was successfully demonstrated using fluorescent objects with a diameter of 0.2 micron. The experimental results shown in Figure 2 indicate that the developed microscopy system achieves 3D sensing of nanoparticles and has submicron resolution quantitatively for a 3D space. Scanless 3D measurement in less than 1 millisecond is achievable by using the algorithm with either a ferroelectric liquid crystal on silicon (FLCOS) or an electro-optic (EO) device. Color-multiplexed holographic fluorescence imaging with the algorithm and only four exposures has also been demonstrated by combining the proposed algorithm and computational coherent superposition (CCS). The number of exposures is reduced by the algorithm, and the number of photons per hologram is increased even for ultimately weak light.

[Future prospects]

  • High-speed holographic motion-picture imaging for 3D dynamics and multiple moving objects in a 3D space.
  • Improvements of the system such as recording of a quantitative phase, sensing of ultimately weak light, and construction of a compact optical setup.

###

Media Contact
HIROTA Sachiko
[email protected]

Original Source

https://www.nict.go.jp/en/press/2021/01/29-1.html

Related Journal Article

http://dx.doi.org/10.1364/OL.414083

Tags: Algorithms/ModelsBiotechnologyChemistry/Physics/Materials SciencesComputer ScienceElectromagneticsHardwareOpticsResearch/DevelopmentTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Profiling Toxoplasma gondii Antigens in Mice

Profiling Toxoplasma gondii Antigens in Mice

December 16, 2025
Unveiling Xylem Parenchyma Differentiation in Cassava

Unveiling Xylem Parenchyma Differentiation in Cassava

December 16, 2025

Chronic Toxoplasmosis Disrupts Male Rat Reproductive Axis

December 16, 2025

Neospora caninum Risk and Diagnosis in Egyptian Cattle

December 16, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Profiling Toxoplasma gondii Antigens in Mice

Unveiling Xylem Parenchyma Differentiation in Cassava

Combining Biomarkers and AI to Diagnose Lung Infections

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.