• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Heat-free optical switch would enable optical quantum computing chips

Bioengineer by Bioengineer
March 3, 2021
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lucas Schweickert

In a potential boost for quantum computing and communication, a European research collaboration reported a new method of controlling and manipulating single photons without generating heat. The solution makes it possible to integrate optical switches and single-photon detectors in a single chip.

Publishing in Nature Communications, the team reported to have developed an optical switch that is reconfigured with microscopic mechanical movement rather than heat, making the switch compatible with heat-sensitive single-photon detectors.

Optical switches in use today work by locally heating light guides inside a semiconductor chip. “This approach does not work for quantum optics,” says co-author Samuel Gyger, a PhD student at KTH Royal Institute of Technology in Stockholm.

“Because we want to detect every single photon, we use quantum detectors that work by measuring the heat a single photon generates when absorbed by a superconducting material,” Gyger says. “If we use traditional switches, our detectors will be flooded by heat, and thus not work at all.”

The new method enables control of single photons without the disadvantage of heating up a semiconductor chip and thereby rendering single-photon detectors useless, says Carlos Errando Herranz, who conceived the research idea and led the work at KTH as part of the European Quantum Flagship project, S2QUIP.

Using microelectromechanical (MEMS) actuation, the solution enables optical switching and photon detection on a single semiconductor chip while maintaining the cold temperatures required by single-photon detectors.

“Our technology will help to connect all building blocks required for integrated optical circuits for quantum technologies,” Errando Herranz says.

“Quantum technologies will enable secure message encryption and methods of computation that solve problems today’s computers cannot,” he says. “And they will provide simulation tools that enable us to understand fundamental laws of nature, which can lead to new materials and medicines.”

The group will further develop the technology to make it compatible with typical electronics, which will involve reducing the voltages used in the experimental setup.

Errando Herranz says that the group aims to integrate the fabrication process in semiconductor foundries that already fabricate on-chip optics – a necessary step in order to make quantum optic circuits large enough to fulfill some of the promises of quantum technologies.

###

Financial support for the research was made possible by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 820423 (S2QUIP); the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the State of Upper Austria, and the Austrian Science Fund.

The work was co-supervised at KTH by Professor Val Zwiller at KTH and Professor Klaus D. Jöns (now at Paderborn University, Germany). Errando Herranz is now a researcher at Massachusetts Institute of Technology (MIT), in the U.S. Contributing to the study were researchers from Linz Institute of Technology and Johannes Kepler University, in Austria.

Media Contact
David Callahan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21624-3

Tags: BiotechnologyComputer ScienceElectrical Engineering/ElectronicsElectromagneticsHardwareOpticsSuperconductors/SemiconductorsSystem Security/HackersTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

September 10, 2025
blank

Fermented Poncirus Extract Inhibits Fat Cell Formation

September 10, 2025

Life at the Edge: Exploring Survival Within Arctic Ice

September 10, 2025

Decoding Animal Decision-Making: NIH Funds Groundbreaking Research on Exploration vs. Exploitation

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    52 shares
    Share 21 Tweet 13
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Critically Endangered Shark Meat Frequently Sold Under False Labels in US, Study Finds

Misconceptions Prevent Certain Cancer Patients from Accessing Hormone Therapy Benefits

New ECU Study Reveals Muscle Loss in Children During Early Cancer Treatment: A Hidden Threat to Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.