• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gut Piezo1 regulates gut and bone homeostasis via RNA sensing.

Bioengineer by Bioengineer
July 7, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kenta Maruyama

In a new study published in Cell, “RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis”, a research team led by Kenta Maruyama M.D., Ph.D. from National Institute for Physiological Sciences (NIPS) explored the role of Piezo1, a mechano-sensing receptor, in the sensing of bacterial RNA. They found that gut Piezo1 stimulated by bacterial RNA was pivotal for the production of serotonin, an important hormone that regulates gut and bone homeostasis.

Serotonin is critical for normal functioning of the central and peripheral nervous system to control emotion, peristalsis and blood pressure. The two production origins of serotonin include brain neurons and the gut enterochromaffin cells. Notably, serotonin does not cross the blood-brain barrier and 90% of the body’s total serotonin is secreted by enterochromaffin cells, establishing gut as the major source of peripheral serotonin. Most of the gut-derived serotonin is absorbed by platelets that release it after a various stimulation. This then leads to the activation of several biological phenomena, such as gut peristalsis and bowel inflammation. Interestingly, it has been reported that small fraction of gut-derived serotonin acts as a hormone. For instance, bone forming osteoblasts function is inhibited by serotonin. Notably, gut specific deletion of tryptophan hydroxylase-1 (Tph-1), a synthase that generates serotonin from tryptophan, leads to the high bone mass phenotype. Despite the pleiotropic functions of gut-derived serotonin in various biological phenomena, the molecular mechanisms controlling serotonin production remain largely unexplored.

Sensation of the mechanical forces in the gut is critical for normal peristalsis, but their molecular mechanisms are elusive. The mechanosensitive Piezo1 cation channel was recently identified, which is expressed in various tissues and is critical for mechano-transduction in vascular development, red blood cell volume control and blood pressure homeostasis. Despite the importance of Piezo1 in mechano-sensation, its function in gut remains to be explored.

In this study, NIPS research team demonstrated that microbiome-derived single-stranded RNA (ssRNA) induces serotonin production from the gut enterochromaffin cells via Piezo1 in the absence of mechanical force. The intestinal epithelium-specific deletion of Piezo1 causes impaired gut peristalsis, mild manifestations of experimental colitis, and increases bone mass accompanied by low serum serotonin levels. The researchers further found that mouse fecal extracts contain large amounts of RNA and purified fecal RNA activates Piezo1. Strikingly, RNase A, a ssRNA degrading enzyme, abolishes the ligand activity of fecal RNA and successfully suppresses serum serotonin level and increases bone mass by infusion to the colon. These findings indicate that targeting gut ssRNA can be a good strategy for modulating the gut-derived serotonin associated pathophysiology.

###

Media Contact
Kenta Maruyama
[email protected]

Tags: BacteriologyBiologyCell BiologyMedicine/HealthMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

MD Anderson researchers highlight advances in clinical studies at the AACR Annual Meeting 2021

April 11, 2021
IMAGE

Level of chromosomal abnormality in lung cancer may predict immunotherapy response

April 10, 2021

Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis

April 10, 2021

UNT Health Science Center leads health literacy outreach in seven states

April 9, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologyGeneticsMedicine/HealthClimate ChangeInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthMaterialscancerEcology/EnvironmentChemistry/Physics/Materials SciencesBiology

Recent Posts

  • MD Anderson researchers highlight advances in clinical studies at the AACR Annual Meeting 2021
  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In