• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Gut Piezo1 regulates gut and bone homeostasis via RNA sensing.

Bioengineer by Bioengineer
July 7, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kenta Maruyama

In a new study published in Cell, “RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis”, a research team led by Kenta Maruyama M.D., Ph.D. from National Institute for Physiological Sciences (NIPS) explored the role of Piezo1, a mechano-sensing receptor, in the sensing of bacterial RNA. They found that gut Piezo1 stimulated by bacterial RNA was pivotal for the production of serotonin, an important hormone that regulates gut and bone homeostasis.

Serotonin is critical for normal functioning of the central and peripheral nervous system to control emotion, peristalsis and blood pressure. The two production origins of serotonin include brain neurons and the gut enterochromaffin cells. Notably, serotonin does not cross the blood-brain barrier and 90% of the body’s total serotonin is secreted by enterochromaffin cells, establishing gut as the major source of peripheral serotonin. Most of the gut-derived serotonin is absorbed by platelets that release it after a various stimulation. This then leads to the activation of several biological phenomena, such as gut peristalsis and bowel inflammation. Interestingly, it has been reported that small fraction of gut-derived serotonin acts as a hormone. For instance, bone forming osteoblasts function is inhibited by serotonin. Notably, gut specific deletion of tryptophan hydroxylase-1 (Tph-1), a synthase that generates serotonin from tryptophan, leads to the high bone mass phenotype. Despite the pleiotropic functions of gut-derived serotonin in various biological phenomena, the molecular mechanisms controlling serotonin production remain largely unexplored.

Sensation of the mechanical forces in the gut is critical for normal peristalsis, but their molecular mechanisms are elusive. The mechanosensitive Piezo1 cation channel was recently identified, which is expressed in various tissues and is critical for mechano-transduction in vascular development, red blood cell volume control and blood pressure homeostasis. Despite the importance of Piezo1 in mechano-sensation, its function in gut remains to be explored.

In this study, NIPS research team demonstrated that microbiome-derived single-stranded RNA (ssRNA) induces serotonin production from the gut enterochromaffin cells via Piezo1 in the absence of mechanical force. The intestinal epithelium-specific deletion of Piezo1 causes impaired gut peristalsis, mild manifestations of experimental colitis, and increases bone mass accompanied by low serum serotonin levels. The researchers further found that mouse fecal extracts contain large amounts of RNA and purified fecal RNA activates Piezo1. Strikingly, RNase A, a ssRNA degrading enzyme, abolishes the ligand activity of fecal RNA and successfully suppresses serum serotonin level and increases bone mass by infusion to the colon. These findings indicate that targeting gut ssRNA can be a good strategy for modulating the gut-derived serotonin associated pathophysiology.

###

Media Contact
Kenta Maruyama
[email protected]

Tags: BacteriologyBiologyCell BiologyMedicine/HealthMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Sex Differences in Alcohol’s Impact on Brain Dopamine

September 6, 2025

Fecal Transplants: New Hope for Alzheimer’s Treatment

September 6, 2025

CheckMate 77T: Nivolumab Preserves Quality of Life and Mitigates Symptom Worsening in Resectable NSCLC

September 6, 2025

miR-BART19-3p Boosts EBV-Associated Gastric Cancer Growth

September 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

COMPEL Study Finds Adding Chemotherapy to Osimertinib After Progression Enhances Progression-Free Survival in EGFR-Mutated NSCLC

Sex Differences in Alcohol’s Impact on Brain Dopamine

Fecal Transplants: New Hope for Alzheimer’s Treatment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.