• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Green hydrogen: “Rust” as a photoanode and its limits

Bioengineer by Bioengineer
April 19, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metal oxides such as rust are intriguing photoelectrode materials for the production of green hydrogen with sunlight. They are cheap and abundant, but in spite of decades of research, progress has been limited.

IMAGE

Credit: Technion

Hydrogen will be needed in large quantities as an energy carrier and raw material in the energy system of the future. To achieve this, however, hydrogen must be produced in a climate-neutral way, for example through so-called photoelectrolysis, by using sunlight to split water into hydrogen and oxygen. As photoelectrodes, semiconducting materials are needed that convert sunlight into electricity and remain stable in water. Metal oxides are among the best candidates for stable and inexpensive photoelectrodes. Some of these metal oxides also have catalytically active surfaces that accelerate the formation of hydrogen at the cathode or oxygen at the anode.

Why is rust not much better?

Research has long focused on haematite (α-Fe2O3), which is widely known as rust. Haematite is stable in water, extremely inexpensive and well suited as a photoanode with a demonstrated catalytic activity for oxygen evolution. Although research on haematite photoanodes has been going on for about 50 years, the photocurrent conversion efficiency is less than 50% of the theoretical maximum value. By comparison, the photocurrent efficiency of the semiconductor material silicon, which now dominates almost 90% of the photovoltaic market, is about 90% of the theoretical maximum value.

Scientists have puzzled over this for a long time. What exactly has been overlooked? What is the reason that only modest increases in efficiency have been achieved?

Israeli-German team solves the puzzle

In a recent study published in Nature Materials, however, a team led by Dr. Daniel Grave (Ben Gurion University), Dr. Dennis Friedrich (HZB) and Prof. Dr. Avner Rothschild (Technion) has provided an explanation as to why haematite falls so far short of the calculated maximum value. The group at Technion investigated how the wavelength of absorbed light in hematite thin films affects the photoelectrochemical properties, while the HZB team determined the wavelength dependent charge carrier properties in thin films of rust with time-resolved microwave measurements.

Fundamental physical property extracted

By combining their results, the researchers succeeded in extracting a fundamental physical property of the material that had generally been neglected when considering inorganic solar absorbers: The photogeneration yield spectrum. “Roughly speaking, this means that only part of the energy of the light absorbed by haematite generates mobile charge carriers, the rest generates rather localised excited states and is thus lost,” Grave explains.

Rust will not get much better

“This new approach provides experimental insight into light-matter interaction in haematite and allows distinguishing its optical absorption spectrum into productive absorption and non-productive absorption,” Rothschild explains. “We could show that the effective upper limit for the conversion efficiency of haematite photoanodes is significantly lower than that expected based on above band-gap absorption,” says Grave. According to the new calculation, today’s “champion” haematite photoanodes have already come quite close to the theoretically possible maximum. So it doesn’t get much better than that.

Assessing new photoelectrode materials

The approach has also been successfully applied to TiO2, a model material, and BiVO4, which is currently the best-performing metal oxide photoanode material. “With this new approach, we have added a powerful tool to our arsenal that enables us to identify the realizable potential of photoelectrode materials. Implementing this to novel materials will hopefully expedite the discovery and development of the ideal photoelectrode for solar water splitting. It would also allow us to ‘fail quickly’, which is arguably just as important when developing new absorber materials” says Friedrich.

###

Media Contact
Antonia Roetger
[email protected]

Original Source

https://www.helmholtz-berlin.de/bin/news_seite?nid=22700;sprache=en;intern=1

Related Journal Article

http://dx.doi.org/10.1038/s41563-021-00955-y

Tags: Chemistry/Physics/Materials SciencesClimate ChangeEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Safeguarding Your Heart: Essential Insights for Heart Health

Safeguarding Your Heart: Essential Insights for Heart Health

July 31, 2025
blank

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

July 31, 2025

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

July 31, 2025

Transforming Hydrogen Fluoride Production: Safer and Scalable Synthesis Breakthrough

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Safeguarding Your Heart: Essential Insights for Heart Health

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.