• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Grant awarded to determine if meningitis and sepsis increase Alzheimer’s risk

Bioengineer by Bioengineer
June 30, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Rogelio Castro/UTHealth

The role of peripheral and brain infections in the development of Alzheimer’s disease is the focus of new research at The University of Texas Health Science Center at Houston (UTHealth), funded with a $2 million grant from the National Institutes of Health (NIH).

“If we can prove the theory that infection is one of the factors that triggers Alzheimer’s disease, and specifically sepsis and meningitis, we can pay more attention to these diseases and possibly be able to avoid the onset of dementia for people in the long term,” said co-principal investigator Tatiana Barichello, PhD, assistant professor in the Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School at UTHealth.

Principal investigator on the preclinical study is Rodrigo Morales, PhD, associate professor in the Department of Neurology at McGovern Medical School at UTHealth.

Morales and Barichello will seek to identify the molecular and cellular mechanisms associated with the role of infection in the development of Alzheimer’s disease with the hope that doctors would be able to identify patients who may have an increased risk of developing the disease based on a prior diagnosis of sepsis or meningitis.

Alzheimer’s disease is a type of dementia that affects memory, thinking, and behavior. The symptoms progress and grow severe enough to interfere with daily tasks. More than 6 million Americans are living with Alzheimer’s disease, according to the Alzheimer’s Association. Factors in development of the disease include genetics, age, family history, general lifestyle and wellness choices, and illnesses and health conditions including heart disease, stroke, and concussion.

Morales said one potential link between infections and the development of Alzheimer’s disease is the activation of the peripheral immune system. Immune response in the brain or peripheral compartments may activate resident immune cells in the brain. Although this event may be beneficial, chronic immune activation or severe acute events may lead to different clinical conditions at short or long terms.

“Imbalance in the immune system may also increase the production of certain proteins that may initiate Alzheimer’s disease,” Morales said.

Another link is the permeability of the blood-brain barrier. “The blood-brain barrier acts as the defense mechanism for the brain allowing certain substances to enter the brain and keeping other substances out, but during an event like an injury or infection, that barrier is compromised, which allows those substances that might be harmful to the brain to enter it. These substances can lead to the buildup of inflammation in the brain, which in turn can lead to the development of Alzheimer’s disease,” Morales said.

The study will use different approaches to analyze the potential role of infection in Alzheimer’s disease. This include the use of transgenic mice, human samples, and novel in vitro techniques. One of them is the protein misfolding cyclic amplification (PMCA) technology.

Barichello and Morales are excited to work with a team of researchers across several different departments at McGovern Medical School on the project.

The PMCA technique being used was developed by Claudio Soto, PhD, professor of neurology at McGovern Medical School and director of the George and Cynthia Mitchell Center for Research in Alzheimer’s Disease and Related Brain Disorders, and has been used previously to study several other diseases including Parkinson’s disease.

Other McGovern Medical School collaborators on the study from the Department of Neurology include Louise McCullough, MD, PhD, professor and chair and the Roy M. and Phyllis Gough Huffington Distinguished Chair of the Department of Neurology; Paul Schulz, MD, professor; and Akihiko Urayama, PhD, associate professor. Rodrigo Hasbun, MD, MPH, professor of infectious diseases in the Department of Internal Medicine is also a collaborator.

Morales, Barichello, Soto, McCullough, Schulz, and Urayama are faculty members of The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences.

Felipe Dal Pizzol, MD, PhD, from the Universidade do Extremo Sul Catarinense in Criciúma, Brazil, will also collaborate on the research.

The study was funded by the National Institute on Aging, part of the NIH (grant RF1AG072491).

###

Media Contact
Deborah Lake
[email protected]

Original Source

https://www.uth.edu/news/story.htm?id=8bf6f6fb-4c78-4c80-a817-823fdd32e9f5

Tags: AlzheimerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.