• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Genetically-modified mosquitoes key to stopping Zika virus spread

Bioengineer by Bioengineer
January 26, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: MU College of Veterinary Medicine

COLUMBIA, Mo. – In 2016, the World Health Organization called the Zika virus epidemic a “public health emergency of international concern” due to the virus causing birth defects for pregnant women in addition to neurological problems. Since then, researchers have wrestled with different strategies for controlling the spread of Zika virus, which gets transmitted to humans from female mosquito bites.

One approach, which was approved by the Environmental Protection Agency in May, will release more than 750 million genetically modified mosquitos into the Florida Keys in 2021 and 2022. These “suicide mosquitos” are genetically-altered to produce offspring that die before emerging into adults and therefore cannot bite humans and spread disease.

However, wiping out future generations of mosquitoes may cause environmental complications, such as potentially disrupting food chains. A new research study at the University of Missouri offers another option: genetically modifying mosquitoes to be resistant to Zika virus altogether.

Alexander Franz, an associate professor in the MU College of Veterinary Medicine, collaborated with researchers at Colorado State University by using CRISPR gene-editing technology to produce mosquitoes that are unable to replicate Zika virus and therefore cannot infect a human through biting.

“We genetically manipulated these mosquitoes by inserting an artificial gene into their genome that triggers one of the immune pathways in the midgut to recognize and destroy the RNA genome of Zika virus,” Franz said. “By developing these mosquitoes that are resistant to the virus, the disease cycle is interrupted so transmission to humans can no longer take place.”

Franz added that the genetic modification is inheritable, so future generations of the altered mosquitoes would be resistant to Zika virus as well.

“We are interested in strategies for controlling insect vectors like mosquitoes that transmit various viruses affecting human health,” Franz said. “Public health experts suggest having a toolbox with different approaches available to tackle a virus such as Zika, and unfortunately right now there are limited options. There is no vaccine for the Zika virus widely available and spraying insecticides has become ineffective since the mosquitoes can develop resistance, so we are simply trying to expand the toolbox and provide a solution by genetically modifying the mosquitoes to become Zika-resistant while keeping them alive at the same time.”

Franz’ research is designed to help prevent another outbreak of Zika virus disease from occurring.

“If you can ever find a way to block the transmission of a pathogen that negatively affects humans, that is good news,” Franz said. “We have shown this is a viable option for genetically modifying mosquitos in a lab setting. There would need to be thorough discussions about regulatory compliance to see if this can be a solution out in the field down the road, and who knows when another Zika outbreak might happen in the future, which is why this research is so important.”

###

“The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegypti” was recently published in Viruses. Co-authors on the study are Adeline E. Williams, Irma Sanchez-Vargas, William R. Reid, Jingyi Lin and Ken E. Olson. The study was funded by the National Institutes of Health.

Media Contact
Brian Consiglio
[email protected]

Original Source

https://showme.missouri.edu/2021/genetically-modified-mosquitoes-key-to-stopping-zika-virus-spread/

Related Journal Article

http://dx.doi.org/10.3390/v12111231

Tags: BiodiversityBiologyCell BiologyDisease in the Developing WorldEnvironmental HealthGeneticsMedicine/HealthParasitologyVirologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Middle Jurassic Bittacidae Species Reveal Wing Diversity

August 23, 2025
blank

Exploring Bacterial Community Layers in Bohai Sea Sediments

August 23, 2025

Weather’s Impact on Anopheles Mosquito Populations in Lagos

August 23, 2025

Ghost Spider’s Maternal Care vs. New Fly Species

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synthetic MRI Reveals Brain Changes in Parkinson’s Types

New Middle Jurassic Bittacidae Species Reveal Wing Diversity

MRI and AI Predict Prostate Cancer Spread

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.