• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Genetic mutation drives tumor regression in Tasmanian Devils

Bioengineer by Bioengineer
December 5, 2018
in Immunology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WSU


Washington State University scientists have discovered genes and other genetic variations that appear to be involved in cancerous tumors shrinking in Tasmanian devils.

Their research is an important first step towards understanding what is causing devil facial tumor disease, a nearly 100 percent fatal and contagious form of cancer, to go away in a small percentage of Tasmanian devils and could have implications for treating cancer in humans and other mammals as well.

“Some of the genes we think have a role in tumor regression in Tasmanian devils are also shared by humans,” said Mark Margres, a former WSU postdoctoral researcher now at Clemson University. “While still in a very early stage, this research could eventually help in the development of drugs that elicit the tumor regression response in devils, humans and other mammals that don’t have this necessary genetic variation.”

Disappearing Devils

Tasmanian devils have been pushed to the brink of extinction by the rapid spread of devil facial tumor disease, one of only four known forms of transmissible cancer and by far the deadliest. Since it was first documented in 1996, the disease has wiped out an estimated 80 percent of devils in Tasmania, the only place in the world where the animals live.

Margres is part of an international team of researchers studying devil facial tumor disease that is led by Andrew Storfer, an evolutionary geneticist and WSU professor of biology.

For the last decade, Storfer’s team has been investigating how some Tasmanian devil populations are evolving genetic resistance to devil facial tumor disease that could help the species avoid extinction.

A year ago, Storfer’s Australian collaborators, Manuel Ruiz, Rodrigo Hamede and Menna Jones noticed something very unusual while trapping and tagging devils in an isolated region of Tasmania. A very small number of devils that developed facial tumors did not die. Rather, over a period of several months, the tumors went away on their own.

“This was very unusual and we wanted to test for evidence of genomic variation that was causing these devils to spontaneously get better” Storfer said.

The researchers sequenced the genomes of seven of the Tasmanian devils that underwent tumor regression and three that did not.

They found the devils that lost their tumors had three highly differentiated genomic regions containing multiple genes that are known to be related to immune response and cancer risk in humans and other mammals.

“We identified some candidate genes that we think may be important in the tumor regression response and now we can begin to functionally test these genes to see if it is possible to elicit the same tumor regression response,” Margres said. “While it is hard to say anything definite with such a small sample size, I think this research is sort of the first step towards characterizing the genetic basis of the tumor regression trait.”

The results of Margres and Storfer’s work were published last month in the journal Genome Biology and Evolution. The researchers said the next step in the research is to analyze the tumor genome to see if there are specific mechanisms or mutations there that lead to tumor shrinkage.

Uncovering mechanisms of tumor regression

Tumor regression is not a phenomenon exclusive to Tasmanian devils. While extremely rare, it has been documented in human cancers.

One such cancer is Merkel Cell Carcinoma, a rare type of skin cancer that often appears on the face, head or neck.

Doctors observed spontaneous tumor regression in a Merkel Cell Carcinoma patient for the first time in 1986 and it has occurred at least 22 times since. However, researchers remain unsure of what causes the tumors to go away on their own.

Storfer and Margres hope is that developing a better understanding of the genetic basis of tumor regression in Tasmanian devils may eventually enable the identification of general mechanisms underlying tumor regression in Merkel Cell Carcinoma and other human cancers.

###

Media Contact
Andrew Storfer
[email protected]
509-335-7922

Related Journal Article

http://dx.doi.org/10.1093/gbe/evy229

News source: https://scienmag.com/

Tags: BiologycancerGenesGeneticsInfectious/Emerging DiseasesMedicine/HealthPopulation BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    36 shares
    Share 14 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Project Launches to Accelerate Crop Improvement Techniques

Scientists Discover Protein Key to the Evolution of Photosynthesis in Land Plants

mTOR-Driven APC/C Inactivation Enhances Glycolysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.