• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 18, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

FEFU scientists explain how to storage cipher data in magnetic skyrmions

Bioengineer by Bioengineer
November 30, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: FEFU press office

Scientists of Far Eastern Federal University (FEFU) with international collaborators propose direct magnetic writing of skyrmions, i.e. magnetic quasiparticles, and skyrmion lattices, within which it is possible to encode, transmit, process information, and produce topological patterns with a resolution of less than 100 nanometers. This brings closer miniaturized post-silicon electronics, new topological cryptography techniques, and green data centers, reducing the load on the Earth’s ecosystem significantly. A related article appears in ACS Nano.

International scientific teams are intensively looking for alternative materials and approaches to replace silicon electronics devices based on CMOS technology (complementary metal-oxide-semiconductor). The major drawback of this technology is the size of contemporary transistors based on it. Physical impossibility to further miniaturizing them implies the future development of the electronics industry is under question.

One of the promising alternatives to CMOS transistors is thin-film magnetic materials with layers from one to several nanometers thick, in which skyrmions, nontrivial magnetic structures, are formed under certain conditions.

In the study, researchers claim they have designed close-packed stable arrays of skyrmions via affecting a thin-film magnetic structure by the local magnetic field of a magnetic force microscope probe.

Thus, the team pioneered topological nanolithography, getting nanoscale topological patterns where each individual skyrmion acts as a pixel, just like in digital photography. Such skyrmion pixels are not visible in the optical range and to decode them, as well as to create them, one needs a magnetic force microscope.

“Skyrmions driven by current pulses can be used as basic elements mimic the action potential of biological neurons to create neuromorphic chips. Arrays of chips with each tiny neuron element communicating with another one by means of moving and interacting skyrmions, will have energy efficiency and high computing power”, says Alexander Samardak, one of the authors of the research idea, FEFU Vice-President for Research. “Another interesting field is visual or topological cryptography. In that case, a message is encrypted as a topological pattern which is a set of ordered skyrmions. Deciphering such a message will require, first, knowledge of the coordinates of the nanoscale image and, second, the availability of a special gear as a magnetic force microscope with high sensitivity to stray fields of skyrmions. Attempting to hack the message with incorrectly selected parameters for reading the topological image will lead to its destruction. Currently, about 25 MB of information can be recorded on a square millimeter of a magnetic thin film. By reducing the size of skyrmions to 10 nm, a capacity of 2.5 Gb / mm2 can be achieved.”

The limitation of the approach is that the speed of recording of information with local point magnetic fields. It is still very slow, which curbs the approach from mass implementation.

Alexander Samardak said that the team learned how to regulate the size and density of the skyrmions packing, controlling the scanning step (a distance between two adjacent scanning lines) with a probe of the magnetic force microscope. It expands the possible future applications. For example, if the skyrmions have a size of less than 100 nanometers, they can be used as a base for reservoir computing, reconfigurable logic, and magnonic crystals which are the basis of magnonic processors and microwave communication devices in the sub-THz and THz range. Such devices will be much more energy-efficient compared to existing electronics. That paves the way for future green and high-performance data centers.

“Skyrmion can be a carrier of information bits. That is possible due to the skyrmion polarization, i.e. positions “up” or “down” which relates to well-known “0” or “1”. Hence, skyrmions can be basic elements for magnetic or racetrack memory. Such devices, in contrast to hard magnetic disks, will have no mechanical parts, bits of information will move by themselves. Moreover, ordered two-dimensional arrays of skyrmions can play the role of artificial magnonic crystals, through which not electric current but spin waves propagate transmitting information from a source to a receiver without heating the working elements,” Alexey Ognev says, the first author of the article, Head of the FEFU Laboratory for thin-film technologies.

Using the developed technology, scientists plan to scale down the size of skyrmions and develop practical devices based on them.

###

Supporting information: https://pubs.acs.org/doi/10.1021/acsnano.0c04748?goto=supporting-info

Media Contact
Alexander Zverev
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsnano.0c04748

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsNanotechnology/MicromachinesSuperconductors/SemiconductorsTelecommunications
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021
Next Post
IMAGE

Holographic fluorescence imaging

IMAGE

Raman holography

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    39 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Chemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceCell BiologycancerPublic HealthMaterialsClimate ChangeGeneticsEcology/EnvironmentMedicine/HealthBiologyInfectious/Emerging Diseases

Recent Posts

  • Eliminating microplastics in wastewater directly at the source
  • Where COVID-19 hit hardest, sudden deaths outside the hospital increased
  • Many parents say teens with anxiety, depression may benefit from peer confidants at school
  • Scientists shed light on how and why some people report “hearing the dead”
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In