• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Fat cells reprogrammed to increase fat burning

Bioengineer by Bioengineer
December 13, 2014
in Bioengineering
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

White adipose tissue stores excess calories as fat that can be released for use in other organs during fasting. Mammals also have small amounts of brown adipose tissue, which primarily acts as an effective fat burner for the production of heat. Now researchers from the University of Southern Denmark have uncovered the mechanism by which white fat cells from humans gets reprogrammed to become browner.

This image shows a human fat cell

This image shows a human fat cell from Mandrup Group. Photo Credit: University of Southern Denmark

Browning of white adipose tissue increases the energy consumption of the body and therefore constitutes a potential strategy for future treatment of obesity. The challenge is to reprogram the energy storing white fat cells into so-called “brite” (brown-in-white) fat cells in the body’s white adipose tissue and thus make adipose tissue burn off excess energy as heat instead of storing it.

The research team from the Department of Biochemistry and Molecular Biology headed by Professor Susanne Mandrup are publishing a paper entitled “Browning of human adipocytes requires KLF11 and reprogramming of PPAR super-enhancers” in the January 1 edition of the scientific journal “Genes & Development” that describes their results from working with “brite” fat cells.

“We have investigated how the genome of white adipocytes is reprogrammed during browning using advanced genome sequencing technologies. We stimulated browning in human white adipocytes by a drug used to treat type II diabetes and compared white and “brite” fat cells. This showed that “brite” fat cells have distinct gene programs which, when active, make these cells particularly energy-consuming,” says Susanne Mandrup and continues.

“By identifying the areas of the genome that are directly involved in the reprogramming, we have also identified an important factor in the process – the gene regulatory protein KLF11 (Kruppel Like Factor-11), which is found in all fat cells, and we have shown that it is required for the reprogramming to take place.”

One of the absolute main forces behind the project and first author of the paper is PhD student Anne Loft, who is very pleased with the results.

“It has been a long process, and it has taken us four years to get where we are now, so it’s obviously very satisfying when the results are so interesting and useful, as is the case here,” says Anne Loft and points to the future prospects of the research on “brite” fat cells.

“The discovery of the “brite” fat cell mechanisms and the specific regulatory areas brings us closer to understanding how reprogramming of white fat cells takes place. This knowledge potentially means, that in the future we can target drugs to activate the genomic regions and browning factors like KLF11 in the treatment of obesity,” says Anne Loft.

Story Source:

The above story is based on materials provided by University of Southern Denmark.

Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patient-Specific Flow Analysis Reveals Artery Dissection

High-Throughput Discovery of Fluoroprobes for Amyloid

CCR7+ Dendritic Cells Linked to Psoriasis Relapse

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.