• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fat cell discovery could help combat obesity-related health issues

Bioengineer by Bioengineer
April 30, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have discovered differences in fat cells that could potentially identify people predisposed to metabolic diseases such as diabetes and fatty liver disease.

The world-first discovery also identified ‘fast burning’ fat cells that if unlocked might help people lose weight.

About 70 per cent of Australians are overweight or obese, which has been linked to metabolic disease risk. The University of Melbourne, Australia, research found that an individual’s level of risk might depend upon the type of fat they store.

Published in Cell Reports, the study took samples from human volunteers and discovered three specific subtypes of precursor cells that went on to become fat cells.

The first released lots of fat into the bloodstream, the second burned energy at a high rate and the third was ‘rather benign’ and did what a fat cell should normally do but slowly.

All three cell subtypes were present in fat tissue throughout the body, and not confined to a particular part. All were present in all fat samples. Some people had more of some cell subtypes and less of others.

Senior author Matthew Watt, who is Head of Physiology in the University of Melbourne’s School of Biomedical Sciences, said the results indicated that the makeup of these cells in a person’s body could help to determine their health.

Professor Watt said the first subtype might increase the risk of fatty deposits around the body and on organs, regardless of whether they were overweight or not, while the second could possibly prevent weight gain. The third was neutral.

While it is early days, he said further research could potentially determine ways to ‘switch off’ the fat releasing cells and ‘switch on’ the fat burning cells. This would involve developing drug therapies and could take at least 10 years.

Professor Watt said if developed, such treatments could help prevent some illnesses and and be less invasive than bariatric surgery. But they should also involve lifestyle changes.

“Whilst we advocate new discoveries to inform the development of anti-obesity therapies, a healthy lifestyle, including daily activity and reduced food intake, is also important,” he said.

Professor Watt’s team separated different cell types, investigated their genes and assessed proteins and metabolism. They found three subtypes of fat cells, which are also known as adipocyte progenitor cells (APCs).

“The discovery is important because it tells us that not all fat cells are the same and that by understanding the fat subtypes in a human, we might be able to predict their future metabolic health,” Professor Watt said.

While the results indicated certain cell subtypes might increase risk of metabolic disease, Professor Watt said a clinical trial was now needed to accurately answer that question. At this stage it was not practical to routinely test fat composition.

“This requires very detailed and expensive tests,” Professor Watt says. “Until we show a link between certain fat cells and health traits this will not be a useful test.

“We first need to determine whether the number of the fat cell subtypes affects disease development. Then we can work out ways to decrease or increase a certain type of fat cell type to improve health, but again this will require further experimentation.”

###

Media Contact
Cheryl Critchley
[email protected]
http://dx.doi.org/10.1016/j.celrep.2019.04.010

Tags: Cell BiologyDiabetesDiet/Body WeightEating Disorders/ObesityMedicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redefining Sex in Science: Three Rigid Frameworks

December 19, 2025
Pneumococcal S Protein Drives Cell Wall Defense

Pneumococcal S Protein Drives Cell Wall Defense

December 19, 2025

RNA-Seq Unveils Gene Expression Differences in Pea Subspp.

December 19, 2025

MHC Gene Variation Drives Lovebird Evolution

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Forceps Use Linked to Neonatal Bleeding Risks

Preoperative Nutrition Boosts Outcomes in Hirschsprung Kids

Bone Healing: Strain Effects from Loading Timing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.