• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Exoskeleton therapy improves mobility, cognition and brain connectivity in people with MS

Bioengineer by Bioengineer
May 28, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A pilot study led by Kessler Foundation researchers provided proof of concept for robotic-exoskeleton assisted exercise rehabilitation (REAER) in people with substantial MS-related neurological disability

IMAGE

Credit: Kessler Foundation/Jody Banks

East Hanover, NJ. May 28, 2021. A team of multiple sclerosis (MS) experts at Kessler Foundation led the first pilot randomized controlled trial of robotic-exoskeleton assisted exercise rehabilitation (REAER) effects on mobility, cognition, and brain connectivity in people with substantial MS-related disability. Their results showed that REAER is likely an effective intervention, and is a promising therapy for improving the lives of those with MS.

The article, “A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis,” (doi: 10.1016/j.msard.2021.102936) was published on April 4, 2021, by Multiple Sclerosis and Related Disorders. It is available open access at https://www.msard-journal.com/article/S2211-0348(21)00203-0/fulltext.

The authors, are Ghaith J. Androwis, PhD, Brian M. Sandroff, PhD, Peter Niewrzol, MA, Glenn R. Wylie, DPhil, Guang Yue, PhD, and John DeLuca, PhD, of Kessler Foundation, and Farris Fakhoury, DPT, of Kessler Institute for Rehabilitation.

It is common for people with MS to experience impairments in both mobility and cognition, and few therapies exist to manage the range of debilitating symptoms. This lack of treatment options is a major problem for people with MS, especially those with substantial MS-related neurological disability.

Previous research shows that exercise rehabilitation, such as walking, is an effective approach to symptom management, with some research suggesting that even a single exercise rehabilitation intervention can improve both mobility and cognition.

Yet there is a lack of efficacy of exercise rehabilitation on mobility and cognitive outcomes in people with MS who have substantial disability. Adaptive exercise rehabilitation approaches such as body-weight supported treadmill training and robot-assisted gait training have not demonstrated convincing results. Moreover, adaptive interventions lack key interactions between patients and therapists that may improve efficacy.

In this pilot study of 10 participants with significant MS-related neurological disability, researchers explored the use of robotic exoskeletons to manage symptoms. Rehabilitation exercise using robotic exoskeletons is a relatively new approach that enables participants to walk over-ground in a progressive regimen that involves close engagement with a therapist. The Foundation has dedicated a Ekso NR to MS studies to facilitate further research in this area.

As compared to conventional gait training, REAER allows participants to walk at volumes needed to realize functional adaptations–via vigorous neurophysiological demands–that lead to improved cognition and mobility. Effects on brain activity patterns were studied using the functional MRI capabilities of the Rocco Ortenzio Neuroimaging Center at Kessler Foundation.

Investigators compared participants’ improvement after four weeks of REAER vs four weeks of conventional gait training, looking at functional mobility, walking endurance, cognitive processing speed, and brain connectivity.

The results were positive: Relative to conventional gait training, four weeks of REAER was associated with large improvements in functional mobility (ηp2=.38), cognitive processing speed (ηp2=.53), and brain connectivity outcomes, most significantly between the thalamus and ventromedial prefrontal cortex (ηp2=.72). “Four weeks is relatively short for an exercise training study,” noted Dr. Sandroff, senior research scientist at Kessler Foundation and director of the Exercise Neurorehabilitation Research Laboratory. “Seeing improvements within this timeframe shows the potential for exercise to change how we treat MS. Exercise is really powerful behavior that involves many brain regions and networks that can improve over time and result in improved function.”

“This is particularly exciting because therapy using robotic exoskeletons shows such promise for improving the lives of people with co-occurring mobility and cognitive disability, a cohort that likely has the greatest potential to benefit from this new technology,” said Dr. Androwis, lead author and research scientist in the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation. “We’re eager to design a larger trial to further study these effects. Based on our initial results, we’re optimistic that this approach may be superior to the current standard of care.”

###

Funding sources: National Multiple Sclerosis Society, USA (Collaborative Network of New Jersey), Award Number: CA1069-A-7; and Joy and Avi Avidan, New Jersey, USA.

About Kessler Foundation: Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that improves cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. Learn more by visiting http://www.KesslerFoundation.org.

Contact: Carolann Murphy, PA, [email protected]

Media Contact
Carolann Murphy
[email protected]

Original Source

https://kesslerfoundation.org/press-release/robotic-exoskeleton-therapy-mobility-cognition-brain-connectivity

Related Journal Article

http://dx.doi.org/10.1016/j.msard.2021.102936

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyClinical TrialsDisabled PersonsExerciseMedicine/HealthMemory/Cognitive ProcessesRehabilitation/Prosthetics/Plastic SurgeryRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.