• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Exciting tweaks for organic solar cells

Bioengineer by Bioengineer
March 5, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Molecular changes could improve the efficiency of next-generation photovoltaics

IMAGE

Credit: Illustration by Mindy Takamiya


A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics. The new design approach, targeting the molecular backbone of the cell’s power-generating layer, was developed by scientists at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) and published in the journal Chemical Science.

Organic photovoltaics are expected to become the next generation of solar cells as they use cheaper components, and are more lightweight, flexible and easily manufactured compared to currently used inorganic solar cells.

“There is growing concern over the use of fossil fuels and their environmental impacts,” says Hiroshi Imahori, a molecular engineer at iCeMS who led the work with colleague Tomokazu Umeyama. “We need to work hard to improve sustainable energy systems.”

The power-generating layer in organic photovoltaics contains molecules that either donate or accept electrons. Light is absorbed by this thin layer, exciting the molecules, which generate charges that go on to form an electric current. But for light to be efficiently converted to electricity, the electron-accepting component needs to stay excited.

One type of organic cell is very good at absorbing a broad spectrum of light, but doesn’t stay excited for long. To try to address this, Imahori, Umeyama and their colleagues in Japan targeted the molecular backbone of the cell’s electron-accepting component. Specifically, they replaced a central ring with a molecule called thienoazacoronene, creating a new molecule called TACIC.

Similar to its predecessor, TACIC absorbed a broad spectrum of visible and near-infrared light. Significantly, it maintained its excited state 50 times longer, converting more than 70% of light particles into current. The design achieved this by stabilizing the vibration and rotation that normally occur when light is absorbed, saving kinetic energy and facilitating intermolecular interaction.

The cell continues to have a power conversion efficiency of just under 10%, which is comparable to other organic solar cells being researched. The team believes modifications to the side chains and core structure of the thienoazacoronene molecule could further improve the efficiency of organic photovoltaics.

###

DOI: 10.1039/C9SC06456G

About Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS):

At iCeMS, our mission is to explore the secrets of life by creating compounds to control cells, and further down the road to create life-inspired materials.

https://www.icems.kyoto-u.ac.jp/

For more information, contact:

I. Mindy Takamiya/Mari Toyama

[email protected]

Media Contact
I. Mindy Takamiya
[email protected]
81-757-539-764

Related Journal Article

http://dx.doi.org/10.1039/C9SC06456G

Tags: Chemistry/Physics/Materials SciencesEnergy SourcesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025
blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Natural Compounds from Soursop Leaves Target Colon Cancer

Optimizing Biosurfactant Production in Novel Yeast Strain

Reconfigurable SiC Gratings Enable Portable Optical Networks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.