• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Estimates of ecosystem carbon mitigation improved towards the goal of the Paris agreement

Bioengineer by Bioengineer
December 12, 2019
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Masayuki Kondo


Approximately 30 percent of CO2 emitted to the atmosphere by human activities, mainly the use of fossil fuels and deforestation, is taken up by terrestrial ecosystems such as forests and grasslands. The recent reports from the IPCC concluded that new land-use options to enhance this terrestrial carbon sink are needed to meet the goals of the Paris Agreement on Climate. “Yet, it is important to understand the best science-based estimate of where atmospheric CO2 is fixed in terrestrial ecosystems today, and our study makes a significant step in that direction,” says Masayuki Kondo, an Assistant Professor at the Center for Environmental Remote Sensing, Chiba University.

The net CO2 balance between the atmosphere and land is referred to as the “net CO2 flux”, which is the sum of CO2 absorption by photosynthesis (-) and CO2 emissions (+) due to respiration, decomposition of soil organic matter, forest fires, and land-use changes such as deforestation and forest conversion to farmland. A series of the IPCC assessment reports in the past have demonstrated that calculating the total CO2 balance over different regions of the globe is a challenging task.

“There is an urgent need of how much carbon mitigation is required to achieve the temperature targets of the Paris agreement, but we still had a wide spread of estimates on how much CO2 the world terrestrial ecosystems are removing,” says Kondo. He and his colleagues have been trying to comprehensively understand net CO2 flux from the latest results of ‘terrestrial biosphere models’ that simulate terrestrial CO2 fluxes of various processes on theoretical and semi-empirical basis and ‘atmospheric inversions’ that read atmospheric CO2 concentration measured by a global network of monitoring stations and use global 3D atmospheric transport models to provide a dynamic picture of the CO2 fluxes exchanged between different biomes and the atmosphere.

“Up until now, scientists in various fields of earth science have proposed many kinds of methods to estimate net CO2 flux, including biosphere models and atmospheric inversions. These methods do not provide consistent results until we added the CO2 that is outgassed to the atmosphere by rivers and lakes to the biosphere models”. Such inconsistencies between different approaches to mapping terrestrial carbon fluxes most likely to have led the mismatches in flux estimations from biosphere models and atmospheric inversions shown in the IPCC Fifth Assessment Report.

Kondo began to revise the definition of each model with not only those involved in the IPCC Fifth Assessment Report but also in a team of multi-disciplinary researchers belonging to 24 universities and research institutions around the world. “The researchers’ areas of expertise were diverse, ranging from ecology, environmental science, atmospheric physics and chemistry, hydrology, and remote sensing. The periodic update of the Global Carbon Budgets has also helped our cause. We discussed over and over to compensate for differences in definitions.”

As a result of the integrated analysis, the research team succeeded in reducing the mismatches between net CO2 fluxes from multiple data sources. With verifying the accuracy of each method, the research team will continue further research to minimize the discrepancy between net CO2 flux estimations, even at a smaller scale of major individual nations. Lastly, Kondo notes, “With the degree of accuracy that we achieved, we are getting confidence in how much CO2 the world terrestrial ecosystems are removing today. This is a good sign of our progress towards the goals of the Paris agreement. We need to continue working together with experts from various fields of research more than ever.” The team reports their results on December 12 in Global Change Biology.

###

Reference:

Kondo M., Patra P.K., Sitch S., Friedlingstein P., Poulter B., Chevallier F., Ciais P., Canadell J.G., Bastos A., Lauerwald R., Calle L., Ichii K., Anthoni P., Arneth A., Haverd V., Jain A.K., Kato E., Kautz M., Law R.M., Lienert, S., Lombardozzi D., Maki T., Nakamura T., Peylin P., Rödenbeck C., Zhuravlev R., Saeki T., Tian H., Zhu D., Ziehn T., “State of the science in reconciling top-down and bottom-up approaches for terrestrial CO2 budget”, Global Change Biology, DOI:10.1111/gcb.14917

Contact:

Masayuki Kondo Ph.D.

Assistant Professor

Center for Environmental Remote Sensing (CEReS), Chiba University

Phone: +81-43-290-3860

e-mail: [email protected]

Media Contact
Saori Tanaka
[email protected]
81-043-290-3022

Related Journal Article

http://dx.doi.org/10.1111/gcb.14917

Tags: Algorithms/ModelsAtmospheric ScienceClimate ChangeComputer ScienceEcology/EnvironmentForestryGeographySatellite Missions/Shuttles
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Regulating the ribosomal RNA production line

January 22, 2021
IMAGE

A professor from RUDN University developed new liquid crystals

January 22, 2021

New technique builds super-hard metals from nanoparticles

January 22, 2021

No more needles for diagnostic tests?

January 22, 2021
Next Post
IMAGE

Fundamental discoveries for future nanotools: Chemists distinguish multiple weak forces

IMAGE

Depression, anxiety may hinder healing in young patients with hip pain

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In