• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, March 7, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Enzyme biofactories to enhance cord blood transplants

Bioengineer by Bioengineer
October 22, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2020 KAUST; Heno Hwang

A new way of producing an enzyme called fucosyltransferase VI (FTVI) in the lab could help enhance the therapeutic potential of cord blood transplants.

Cord blood is currently used to treat more than 80 life-threatening conditions, ranging from cancer and immune deficiency to metabolic and genetic disorders. The therapy is predicated on the idea that stem cells in the cord blood will traffic to the bone marrow, where they can help rebuild a healthy blood and immune system that has been damaged by disease. But cord blood stem cells are not naturally adept at this process–which is why several drugmakers have turned to FTVI as a way of enhancing the cells’ homing ability.

FTVI is an enzyme involved in tagging cells with sugar molecules in a way that alters migration patterns in the body. In clinical trials, cord blood stem cells treated with FTVI showed enhanced engraftment following infusion into cancer patients. Yet most commercial sources of FTVI available today have only limited enzymatic activity. Plus, they tend to be made using various expression systems that either produce enzymes with low activity or are costly and generate low yields.

Seeking a better manufacturing platform, a team led by Jasmeen Merzaban at KAUST engineered yeast cells and silkworm larvae to express the human version of FTVI. Working with collaborators in Japan, KAUST researchers from several teams came together to devise a purification scheme for obtaining the enzyme at high yields; they then tested how efficiently the end-product could alter human stem cells.

The researchers showed that their yeast- and silkworm-derived FTVI far outperformed commercial sources of the enzyme made in standard expression systems. “Now, these enzymes can be used ex vivo on stem cells to enhance their migration toward the bone marrow during a transplant,” Merzaban says.

Alternatively, researchers could take advantage of the new yeast- and silkworm-produced FTVI for drug screening efforts. First author of the study, Asma Al-Amoodi, points out that many metastatic cancers exhibit enhanced activity of FTVI and similar enzymes. “We could envision using such enzymes to screen for small molecule inhibitors that block metastasis,” she says.

###

Media Contact
Michael Cusack
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/1054/enzyme-biofactories-to-enhance-cord-blood-transplants

Related Journal Article

http://dx.doi.org/10.1021/acs.biochem.0c00523

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyImmunology/Allergies/AsthmaMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Study reveals how egg cells get so big

March 5, 2021
IMAGE

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

New ‘split-drive’ system puts scientists in the (gene) driver seat

March 5, 2021

Online dating: Super effective, or just… superficial?

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In