• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Embryonic-Like Stem Cells Created from Mature Cells

Bioengineer by Bioengineer
October 22, 2013
in Bioengineering, Stem Cells
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bioengineers at the University of California, Berkeley, have shown that physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage, capable of becoming any cell type in the body.

Pluripotent stem cells, created from human skin or mouse ear tissue, are shown here becoming endoderm cells. The endoderm is one of the three primary germ layers that ultimately contribute to the development of vital organs (liver, pancreas, etc.). The yellow highlights the Sox17 protein, expressed during endoderm development. Cell nuclei are shown in magenta. (Credit: Song Li Lab)
Pluripotent stem cells, created from human skin or mouse ear tissue, are shown here becoming endoderm cells. The endoderm is one of the three primary germ layers that ultimately contribute to the development of vital organs (liver, pancreas, etc.). The yellow highlights the Sox17 protein, expressed during endoderm development. Cell nuclei are shown in magenta. (Credit: Song Li Lab)

The researchers grew fibroblasts cells taken from human skin and mouse ears on surfaces with parallel grooves measuring 10 micrometers wide and 3 micrometers high. After two weeks of culture in a special cocktail used to reprogram mature cells, the researchers found a four-fold increase in the number of cells that reverted back to an embryonic-like state compared with cells grown on a flat surface. Growing cells in scaffolds of nanofibers aligned in parallel had similar effects.

The study, published online Sunday, Oct. 20, in the journal Nature Materials, could significantly enhance the process of reprogramming adult cells into embryonic-like stem cells that can differentiate, or develop, into any type of tissue that makes up our bodies.

The 2012 Nobel Prize in Physiology or Medicine was awarded to scientists who discovered that it was possible to reprogram cells using biochemical compounds and proteins that regulate gene expression. These induced pluripotent stem cells have since become a research mainstay in regenerative medicine, disease modeling and drug screening.

“Our study demonstrates for the first time that the physical features of biomaterials can replace some of these biochemical factors and regulate the memory of a cell’s identity,” said study principal investigator Song Li, UC Berkeley professor of bioengineering. “We show that biophysical signals can be converted into intracellular chemical signals that coax cells to change.”

The current process for reprogramming cells relies on a formula that uses a virus to introduce gene-altering proteins into mature cells. Certain chemical compounds, including valproic acid, that can dramatically affect global DNA structure and expression are also used to boost the efficiency of the reprogramming process.

“The concern with current methods is the low efficiency at which cells actually reprogram and the unpredictable long-term effects of certain imposed genetic or chemical manipulations,” said study lead author Timothy Downing, who did this research as a graduate student in the UC Berkeley-UC San Francisco Joint Graduate Program in Bioengineering. “For instance, valproic acid is a potent chemical that drastically alters the cell’s epigenetic state and can cause unintended changes inside the cell. Given this, many people have been looking at different ways to improve various aspects of the reprogramming process.”
Previous studies have shown that physical and mechanical forces can influence cell fate, but the effect on epigenetic state and cell reprogramming had not been clear.

The new study found that culturing cells on micro-grooved biomaterials improved the quality and consistency of the reprogramming process, and was just as effective as valproic acid.

“Cells elongate, for example, as they migrate throughout the body,” said Downing, who is now a research scientist in Li’s lab. “In the case of topography, where we control the elongation of a cell by controlling the physical microenvironment, we are able to more closely mimic what a cell would experience in its native physiological environment. In this regard, these physical cues are less invasive and artificial to the cell and therefore less likely to cause unintended side effects.”

The researchers are studying whether growing cells on grooved surfaces could eventually replace valproic acid and perhaps other chemical compounds in the reprogramming process.

“We are also studying whether biophysical factors could help reprogram cells into specific cell types, such as neurons,” said Jennifer Soto, UC Berkeley graduate student in bioengineering and another co-author of the study.

Story Source:

The above story is based on materials provided by University of California – Berkeley.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016
Next Post
Chukuka S. Enwemeka, dean of UWM’s College of Health Sciences, conducts an experiment with research associate Daniela Masson-Meyers. Enwemeka is internationally known for his work in phototherapy. Among his discoveries: blue light in a certain wavelength kills the antibiotic-resistant “superbug” form of Staphylococcus aureus. Image: Photo by Troye Fox

Light as Medicine? Researchers Explain How

Credit: Lance Hayashida/Caltech Marketing and Communications - See more at: http://www.caltech.edu/content/programming-dna-molecular-robots-interview-lulu-qian#sthash.ejOYCdqH.dpuf

Programming DNA for Molecular Robots

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In