• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Elucidation of nanostructures in practical heterogeneous catalysts

Bioengineer by Bioengineer
May 27, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JAIST

The nanostructure of the heterogeneous Ziegler-Natta catalyst was clarified on the basis of cutting-edge analytical techniques.

Scientists from Japan Advanced Institute of Science and Technology (JAIST) and University of Torino (UNITO) have cooperatively clarified the nanostructure of the heterogeneous Ziegler-Natta catalyst by means of combined synchrotron X-ray analytical techniques, vibrational spectrocopies, and molecular simulations.

Understanding the structure and the working principle of practical catalysts is largely beneficial for designing catalysts towards desired performances. However, this is often infeasible due to inherent complexity of such catalysts. The Ziegler-Natta catalyst is one of the most sophisticated practical catalysts for its performance in producing desired polyolefins at extremely high yield. Nonetheless, the structure of the nanosized building unit of this catalyst has not been fully understood over six decades.

The collaborative research teams of Japan and Italy quantitatively determined the structural disorder and the dimensions of the building unit based on synchrotron X-ray total scattering analysis aided with molecular simulations. Further, by combining infrared spectroscopies with state-of-the-art DFT simulations, the morphology and the surface exposure of the building unit were clarified. The current research corresponds to the first attempt of adopting synchrotron X-ray total scattering and Far IR spectroscopy for the study of the Ziegler-Natta catalyst. Such the multi-faced approach successfully shed new light on the full elucidation of the nanostructure in practical heterogeneous catalysts.

###

Papers titled “Revisiting the identity of δ-MgCl2: Part I. Structural disorder studied by synchrotron X-ray total scattering”, and “Revisiting the identity of δ-MgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation”, both published in Journal of Catalysis, DOI: https://doi.org/10.1016/j.jcat.2020.03.002, and https://doi.org/10.1016/j.jcat.2020.04.017.

This research forms part of the research programme of DPI (P.O. Box 902, 5600 AX Eindhoven, the Netherlands), project #802.

Media Contact
Toru Wada
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jcat.2020.03.002

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Widespread Metal, Extraordinary Potential Unveiled

August 27, 2025
Electrons Unveil Their Handedness in Attosecond Flashes

Electrons Unveil Their Handedness in Attosecond Flashes

August 27, 2025

Decoding Electrolytes and Interface Chemistry to Advance Sustainable Nonaqueous Metal–CO2 Batteries

August 27, 2025

Paving the Way to Pharmaceutical Superintelligence: Insilico Medicine Unites Industry Leaders at BioHK 2025 to Transform AI in Healthcare

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Classifies Mandibular Condyle Variations in Radiographs

Enhancing Kidney Transplant Care Through Remote Monitoring

Integrating Health Equity in Biomedical Engineering Education

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.