• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Elegant antibody nanoparticles override immunological tolerance of tumors

Bioengineer by Bioengineer
July 12, 2019
in Cancer
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image by WANG Dangge

Immune checkpoint blockade (ICB) therapy using the antibody that combats the programmed cell death ligand 1 (PD-L1) shows great potential and is causing a revolution in clinical cancer management. Unfortunately, only a subset of treated patients responds to current ICB therapies, likely due to the immunological tolerance of tumors. Therefore, developing a practical strategy to combat this immunological tolerance and amplify ICB therapies has become a priority.

To meet this challenge, scientists from the Shanghai Institute of Materia Medica (SIMM) of the Chinese Academy of Sciences have developed a tumor enzymatic microenvironment-activatable antibody nanoparticle for robust cancer immunotherapy. This research was published online in Science Immunology.

In this study, Prof. YU Haijun, Prof. LI Yaping and their colleagues engineered the antibody nanoparticles by integrating anti-PD-L1 antibody (αPDL1) and indocyanine green (ICG) into one single nanoplatform. ICG is a clinically approved fluorophore for fluorescence imaging in live surgery and photosensitizer for photodynamic therapy (PDT). The antibody nanoparticles remain inert in blood circulation and protect αPDL1 from binding with normal tissues. Once accumulated at the tumor site through the enhanced permeability and retention (EPR) effect, the antibody nanoparticles become activated to release αPDL1 for tumor-specific PD-L1 blockading.

Moreover, the scientists revealed that the antibody nanoparticles triggered the release of tumor antigens and promoted intratumoral infiltration of cytotoxic T lymphocytes (CTLs) through the ICG-based PDT effect. “This is crucial for cancer immunotherapy since CTLs have been well-identified as the killer of tumor cells,” explained Prof. YU, co-corresponding author of the study.

Finally, they showed that the antibody nanoparticles not only boost antitumor immunity with great efficiency, but also elicit long-term immune memory effects in BALB/c mice, thus leading to remarkable tumor regression.

In particular, the antibody nanoparticle-mediated combination of ICB and PDT therapy effectively suppressed tumor growth and metastasis to the lung and lymph nodes when using a 4T1 tumor-bearing BALB/C mouse model, which resulted in survival for >70% of the mice for more than 65 days, compared to complete mouse death in 42 days for the free αPDL1 group.

“We provided a robust antibody nanoplatform for priming the antitumor immunity and inhibiting the immune checkpoint, which could be readily adapted to other immune checkpoint inhibitors for enhanced ICB therapies. Given the simplicity of the nanostructures, our study has the potential of being translated into future generations of cancer immunotherapy,” Prof. YU said.

###

Media Contact
YU Haijun
[email protected]

Original Source

http://english.cas.cn/

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring NK Cell Therapies for Solid Tumors

October 5, 2025

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

October 4, 2025

α-L-Fucosidase Isoenzymes: New Glioma Prognostic Markers

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chip-Fiber-Chip Quantum Teleportation Advances Star Networks

Virtual Twins: Revolutionizing Epilepsy Stimulation Treatment

Understanding Healthcare Providers’ Role in Reproductive Coercion

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.