• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 1, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electrokinetic proton transport in triple conducting oxides as key descriptor for highly efficient protonic ceramic fuel cells

Bioengineer by Bioengineer
July 6, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UNIST

A research team, led by Professor Guntae Kim in the School of Energy and Chemical Engineering at UNIST has introduced an innovative way to quantify proton kinetic properties of triple (H+/O2?/e?) conducting oxides (TCOs) being a significant indicator for characterizing the electrochemical behavior of proton and the mechanism of electrode reactions.

Layered perovskites have recently received much attention as they have been regarded as promising cathode materials for protonic ceramic fuel cells (PCFCs) that use proton conducting oxide (PCO) as an electrolyte. Therefore, quantitative characterization of the proton kinetics in TCO can be an important indicator providing a scientific basis for the rational design of highly efficient electrode materials of PCFCs, noted the research team.

In this study, the research team employed the isotope exchange diffusion profile (IEDP) method to evaluate the proton kinetic properties of proton in the layered perovskite-type TCOs, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF).

Using heavy water (deuterium oxide, D2O), as a tracking indicator of proton diffusion via time-of-flight secondary ion mass spectrometry (ToF-SIMS), the research team observed the proton formation and transport on both surface and bulk of the PBSCF. The findings revealed that the PBSCF showed two orders of magnitude higher proton tracer diffusion coefficient (D*H, 1.04 × 10?6 cm2 s?1 at 550 °C) than its oxygen diffusion coefficient at even higher temperature range (D*O, 1.9 × 10?8 cm2 s?1 at 590 °C). With the application of this fast proton transfer ability, the PBSCF cathode also exhibited excellent electrochemical performance for PCFC operation at low temperatures (e.g., 0.42 W cm?2 at 500 °C), which is bar far the best performance ever reported, noted the research team.

Meanwhile, a fuel cell is an eco-friendly energy conversion system that uses the chemical energy of hydrogen or another fuel to generate electricity. Among them, PCFCs have shown great potential to be operated at relatively low temperatures. Advantages of this class of fuel cells include a wide range of operating temperature and material choice, which could solve critical issues for solid-state electrochemical devices.

This research has been jointly carried out by Professor Sivaprakash Sengodan from UK’s Imperial College London, Professor Meilin Liu from the Georgia Institute of Technology in the United States, and Professor Sihyuk Choi from Kumoh National Institute of Technology. This study was made available online in March 2021 ahead of final publication in Advanced Science in June 2021.

###

Media Contact
JooHyeon Heo
[email protected]

Original Source

https://news.unist.ac.kr/electrokinetic-proton-transport-in-triple-conducting-oxides-as-key-descriptor-for-highly-efficient-protonic-ceramic-fuel-cells/

Tags: Chemistry/Physics/Materials SciencesElectromagneticsEnergy/Fuel (non-petroleum)Materials
Share12Tweet8Share2ShareShareShare2

Related Posts

Zap Energy Fusion Plant

DOE award to Zap Energy for fusion pilot plant design

May 31, 2023
Experiment illustration

Under pressure: Foundations of stellar physics and nuclear fusion investigated

May 31, 2023

NIRISS instrument on Webb maps an ultra-hot Jupiter’s atmosphere

May 31, 2023

Scientists’ report world’s first X-ray of a single atom in Nature

May 31, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DNA damage repaired by antioxidant enzymes

Petit-spot volcanoes involve the deepest known submarine hydrothermal activity, possibly release CO2 and methane

Producing large, clean 2D materials made easy: just KISS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In