• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Efficient genetic engineering platform established in methylotrophic yeast

Bioengineer by Bioengineer
July 9, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: DICP

Pichia pastoris (syn. Komagataella phaffii), a model methylotrophic yeast, can easily achieve high density fermentation, and thus is considered as a promising chassis cell for efficient methanol biotransformation. However, inefficient gene editing and lack of synthetic biology tools hinder its metabolic engineering toward industrial application.

Recently, a research group led by Prof. ZHOU Yongjin from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences established an efficient genetic engineering platform in Pichia pastoris.

The study was published in Nucleic Acids Research on July 1.

The researchers developed novel genetic tools for precise genome editing in Pichia pastoris by enhancing homologous recombination (HR) rates and engineering the multiple intrusion-induced rearrangement (MIR) processes. The key gene RAD52, which played crucial role in HR repair in Pichia pastoris, was overexpressed for improving the efficiency of single gene editing to 90%.

Furthermore, they increased the efficiency of multi-fragment recombination at one site by 13.5 times, and identified and characterized 46 neutral sites and 18 promoters for genome integration and gene expression.

Finally, they developed a two-factorial regulation system for regulating fatty alcohol biosynthesis in Pichia pastoris from different carbon sources.

“This advanced gene editing systems can theoretically realize stable loading of more than 100 exogenous genes and precise regulating of gene expression in Pichia pastoris, which will provide convenience for the synthetic biology research of Pichia pastoris. It also provides insights for metabolic engineering of other unconventional yeast,” said Prof. ZHOU.

###

This study was supported by the National Natural Science Foundation of China and Dalian Science and Technology Innovation Funding.

Media Contact
Jean Wang
[email protected]

Original Source

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkab535/6312753

Related Journal Article

http://dx.doi.org/10.1093/nar/gkab535

Tags: BiochemistryBiologyBiotechnology
Share12Tweet8Share2ShareShareShare2

Related Posts

Tumor Microenvironment Effects in Liver Cancer Outcomes

Tumor Microenvironment Effects in Liver Cancer Outcomes

November 23, 2025
AI Streamlines Creation of Arabic Health Data Benchmark

AI Streamlines Creation of Arabic Health Data Benchmark

November 23, 2025

Reviving the Baobab: Micropropagation of Adansonia digitata

November 23, 2025

Exploring Vast Chemical Space with Ugi Reaction

November 23, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    96 shares
    Share 38 Tweet 24

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tumor Microenvironment Effects in Liver Cancer Outcomes

AI Streamlines Creation of Arabic Health Data Benchmark

Reviving the Baobab: Micropropagation of Adansonia digitata

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.