• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Drug target could fight Parkinson’s and Alzheimer’s disease

Bioengineer by Bioengineer
March 3, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The University of Queensland

Neurodegenerative disorders such as Parkinson’s and Alzheimer’s disease are in the firing line after researchers identified an attractive therapeutic drug target.

An international collaboration, co-led by University of Queensland researchers, has isolated and analysed the structure and function of a protein found in the brain’s nerve fibres called SARM1.

Dr Jeff Nanson said the protein was activated when nerve fibres were damaged by injury, disease, or as a side effect of certain drugs.

“After a damaging incident occurs, this protein often induces a form of nerve fibre degeneration – known as axon degeneration – a ‘self-destruct’ mechanism of sorts,” Dr Nanson said.

“This is a key pathological feature of many terrible neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease, and also amyotrophic lateral sclerosis (ALS), traumatic brain injury, and glaucoma.

“There are currently no treatments to prevent this nerve fibre degeneration, but now we know that SARM1 is triggering a cascade of degeneration we can develop future drugs to precisely target this protein.

“This work will hopefully help design new inhibiting drugs that could stop this process in its tracks.”

Professor Bostjan Kobe said the researchers analysed the structure of the protein and defined its three-dimensional shape using X-ray crystallography and cryo-electron microscopy.

“With X-ray crystallography, we make proteins grow into crystals, and then shoot X-rays at the crystals to get diffraction,” Professor Kobe said.

“And with cryo-electron microscopy, we freeze small layers of solution and then visualise protein particles by a beam of electrons.

“The resulting 3D images of SARM1’s ring-like structure were simply beautiful, and truly allowed us to investigate its purpose and function.

“This visualisation was a highly collaborative effort, working closely with our partners at Griffith University and our industry partners.”

The researchers hope that the discovery is the start of a revolution in treatments for neurodegenerative disorders.

“It’s time we had effective treatments for these devastating disorders,” Dr Nanson said.

“We know that these types of diseases are strongly related to age, so in the context of an ageing population here in Australia and globally, these diseases are likely to increase.

“It’s incredibly important that we understand how they work and develop effective treatments.”

###

The research is published in Neuron (DOI: 10.1016/j.neuron.2021.02.009).

The study was led by researchers at UQ, Griffith University, Washington University (St Louis), and industry partner Disarm Therapeutics.

Media Contact
Professor Bostjan Kobe
[email protected]

Original Source

https://science.uq.edu.au/article/2021/03/drug-target-could-fight-parkinson%E2%80%99s-and-alzheimer%E2%80%99s-disease

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2021.02.009

Tags: AlzheimerBiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Spotting Low-Risk Cirrhosis Patients for Endoscopy

November 22, 2025

State Medicaid Policies on Antiobesity Medications Explored

November 22, 2025

Oncology Nurses’ Insights on Cancer and Physical Activity

November 22, 2025

Neural-Tube Defects in Botswana: Long-Term Outcomes Explored

November 22, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    92 shares
    Share 37 Tweet 23
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gender-based Immune Shifts Post-Chemotherapy in Pancreatic Cancer

Spotting Low-Risk Cirrhosis Patients for Endoscopy

Identifying Heat Shock Factors in Myricaria laxiflora

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.