• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Do marine protected areas work?

Bioengineer by Bioengineer
July 17, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study identifies how to verify whether MPAs are effective

Marine protected areas, or MPAS, are an increasingly common way of protecting marine ecosystems by prohibiting fishing in specific locations. However, many people remain skeptical that MPAs actually benefit fish populations, and there has not yet been a way to demonstrate whether or not they are effective. Until now.

” target=”_blank”>A study published July 17 in the Journal of Applied Ecology is the first description of how to use data collected before and after a protected area is implemented to measure its effectiveness. Data collected beforehand can help predict how much fish populations are expected to increase. Then scientists can compare it to data collected after the MPA is in place to help determine whether adjustments are needed, such as changing the size or enforcement levels of an MPA.

SAFEGUARDING CALIFORNIA’S MARINE LIFE

California’s Marine Life Protection Act of 1999 was created to safeguard some of the state’s most treasured resources — its coast and ocean. It mandated that such areas be managed adaptively, with the ability to be changed if needed to meet the goals of preserving the diversity and abundance of marine life off the California coast. But, since its implementation, there has not been a way to assess whether or not the state’s MPAs are effective in meeting those goals.

“California has the second largest marine protected area network in the world — the first is in Australia with the Great Barrier Reef — and the rest of the world looks at California as an example of what can be done,” said lead author Kerry Nickols, who began the work while a postdoctoral student at UC Davis and is now at California State University, Northridge.

Such areas are important havens for marine populations facing multiple threats, including climate change, overfishing and habitat degradation. In a sense, MPAs provide a “fence” around a healthy marine environment to preserve what’s inside, Nickols said.

“We have developed a method for managing these MPAs that properly quantifies whether they are benefiting populations in the anticipated way,” said co-author Louis Botsford, a professor emeritus at the UC Davis Department of Wildlife, Fish and Conservation Biology. “It demonstrates the possibility of transparently verifying that MPAs work.”

###

Additional coauthors on the study include J. Wilson White from Oregon State University, Dan Malone and Mark Carr from UC Santa Cruz, Richard M. Starr from the California Sea Grant and Marine Moss Landing Laboratories, and Marissa Baskett and Alan Hastings of UC Davis.

The study was funded by California Sea Grant, National Science Foundation, and the David and Lucile Packard Foundation.

Media Contact
Kat Kerlin
[email protected]
http://dx.doi.org/10.1111/1365-2664.13463

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentFisheries/AquacultureMarine/Freshwater BiologyPopulation Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

New Study Reveals Mysterious ‘Ghost’ of the Australian Bush

September 5, 2025
blank

Novel Mangrove-Derived Streptomyces Reveals Biosynthetic Potential

September 5, 2025

CRISPR-Cas9 Techniques for Editing Non-Model Insects

September 5, 2025

Rapid Brain Growth Could Unlock How Humans and Marmosets Learn to Talk

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Emerging Pollutants in China: An In-Depth Review of Current Challenges, Knowledge Gaps, and Strategic Solutions

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

Enduring Benefits of OR Shadowing for New Nurses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.