• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, June 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Diving into devonian seas: Ancient marine faunas unlock secrets of warming oceans

Bioengineer by Bioengineer
January 27, 2021
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Syracuse University

Members of Syracuse University’s College of Arts and Sciences are shining new light on an enduring mystery–one that is millions of years in the making.

A team of paleontologists led by Professor Cathryn Newton has increased scientists’ understanding of whether Devonian marine faunas, whose fossils are lodged in a unit of bedrock in Central New York known as the Hamilton Group, were stable for millions of years before succumbing to waves of extinctions.

Drawing on 15 years of quantitative analysis with fellow professor Jim Brower (who died in 2018), Newton has continued to probe the structure of these ancient fossil communities, among the most renowned on Earth.

The group’s findings, reported by the Geological Society of America (GSA), provide critical new evidence for the unusual, long-term stability of these Devonian period communities.

Such persistence, Newton says, is a longstanding scientific enigma. She and her colleagues tested the hypothesis that these ancient communities displayed coordinated stasis–a theory that attempts to explain the emergence and disappearance of species across geologic time.

Newton and Brower, along with their student Willis Newman G’93, found that Devonian marine communities vary more in species composition than the theory predicts. Newton points out that they sought not to disprove coordinated stasis but rather to gain a more sophisticated understanding of when it is applicable. “Discovering more about the dynamics of these apparently stable Devonian communities is critical,” she says. “Such knowledge has immediate significance for marine community changes in our rapidly warming seas.”

Since geologist James Hall Jr. first published a series of volumes on the region’s Devonian fossils and strata in the 1840s, the Hamilton Group has become a magnet for research scientists and amateur collectors alike. Today, Central New York is frequently used to test new ideas about large-scale changes in Earth’s organisms and environments.

During Middle Devonian time (approximately 380-390 million years ago), the faunal composition of the region changed little over 4-6 million years. “It’s a significant amount for marine invertebrate communities to remain stable, or ‘locked,'” explains Newton, a professor in the Department of Earth and Environmental Sciences.

She, Brower and student researchers spent years examining eight communities of animals that once dwelled in a warm, shallow sea on the northern rim of the Appalachian Basin (which, eons ago, lay south of the equator). When the organisms died, sediment from the seafloor began covering their shells and exoskeletons. Minerals from the sediment gradually seeped into their remains, causing them to fossilize. The process also preserved many of them in living position, conserving original shell materials at some sites.

These fossils currently populate exposed bedrock throughout Central New York, ranging from soft, dark, deep-water shale to hard, species-rich, shelf siltstone. “Communities near the top of the bedrock exhibit more taxonomic and ecological diversity than those at the bottom,” Newton says. “We can compare the community types and composition through time. They are remarkable sites.”

Coordinated stasis has been a source of contention since 1995, when it was introduced. At the center of the dispute are two model-based explanations: environmental tracking and ecological locking.

Environmental tracking suggests that faunas follow their environment. “Here, periods of relative stasis are flanked by coordinated extinctions or regional disappearances. When the environment changes, so do marine faunas,” says Newton, also Professor of Interdisciplinary Sciences and Dean Emerita of Arts and Sciences.

Ecological locking, in contrast, views marine faunas as tightly structured communities, resistant to large-scale taxonomic change. Traditionally, this model has been used to describe the stability of lower Hamilton faunas.

Newton and her colleagues analyzed more than 80 sample sites, each containing some 300 specimens. Special emphasis was placed on the Cardiff and Pecksport Members, two rock formations in the Finger Lakes region that are part of the ancient Marcellus subgroup, famed for its natural gas reserves.

“We found that lower Hamilton faunas, with two exceptions, do not have clear counterparts among upper ones. Therefore, our quantitative tests do not support the ecological locking model as an explanation for community stability in these faunas,” she continues.

Newton considers this project a final tribute to Newman, a professor of biology at the State University of New York at Cortland, who died in 2014, and Brower, who fell seriously ill while the manuscript was being finalized. “Jim knew that he likely would not live to see its publication,” says Newton, adding that Brower died as the paper was submitted to GSA.

She says this new work extends and, in some ways, completes the team’s earlier research by further analyzing community structures in the Marcellus subgroup. “It has the potential to change how scientists view long-term stability in ecological communities.”

###

Media Contact
Rob Enslin
[email protected]

Original Source

https://www.syracuse.edu/stories/diving-into-devonian-seas/

Related Journal Article

http://dx.doi.org/10.1130/2020.2545(09)

Tags: BiodiversityBiologyClimate ScienceEarth ScienceHydrology/Water ResourcesMarine/Freshwater BiologyPaleontologyTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Diana Bernin_ ChalmersUniversityofTechnology

From Farm to Fashion: How Agricultural Waste is Transforming into Tomorrow’s Textiles

June 17, 2025
NIH Launches New Research Initiative to Investigate PFAS Effects on Male Reproductive Health

NIH Launches New Research Initiative to Investigate PFAS Effects on Male Reproductive Health

June 16, 2025

Machine Learning Advances Enable Diagnostic Testing Beyond the Lab

June 16, 2025

New Technique Breaks Fluorescence Microscopy Resolution Barrier

June 16, 2025
Please login to join discussion

POPULAR NEWS

  • Green brake lights in the front could reduce accidents

    Study from TU Graz Reveals Front Brake Lights Could Drastically Diminish Road Accident Rates

    159 shares
    Share 64 Tweet 40
  • New Study Uncovers Unexpected Side Effects of High-Dose Radiation Therapy

    76 shares
    Share 30 Tweet 19
  • Pancreatic Cancer Vaccines Eradicate Disease in Preclinical Studies

    70 shares
    Share 28 Tweet 18
  • How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seamlessly Connect Nanoparticles Like Building Blocks for Industrial Applications!

From Farm to Fashion: How Agricultural Waste is Transforming into Tomorrow’s Textiles

Boosting D-Lactic Acid Production Through UV Irradiation Advances

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.