• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diamond color centers for nonlinear photonics

Bioengineer by Bioengineer
March 22, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Tsukuba use color center defects in diamonds to demonstrate second-order nonlinear optical effects, which may allow for extremely fast all-optical communication and computation devices.

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Researchers from the Department of Applied Physics at the University of Tsukuba demonstrated second-order nonlinear optical effects in diamonds by taking advantage of internal color center defects that break inversion symmetry of diamond crystal. This research may lead to faster internet communications, all-optical computers, and even open a route to next generation quantum sensing technologies.

Current fiber optical technology uses light pulses to transfer broad-bandwidth data that let you check your email, watch videos, and everything else on the Internet. The main drawback is that light pulses hardly interact with each other, so the information must be converted into electrical signals to allow your computer to handle it. An “all optical” system with light-based logic processing would be much faster and more efficient. This would require new, easy to fabricate nonlinear optical materials that can mediate the combination or splitting of photons.

Now, a team of researchers at the University of Tsukuba have shown that synthetic diamonds can exhibit a second-order nonlinear response. Previously, scientists thought that the inversion-symmetric nature of diamond crystal lattice could only support weaker, odd-order nonlinear optical effects, which depend on the electric field amplitude raised to the power of three, five, and so on. But the team showed diamonds can support second-order nonlinear optical effects when color centers–so-called nitrogen-vacancy (NV) centers–are introduced. In these cases, two adjacent carbon atoms in the diamond’s rigid lattice are replaced with a nitrogen atom and a vacancy. This breaks the inversion symmetry and permits even-order nonlinear processes to occur, which include more useful outcomes that scale as the electric field squared. “Our work allows us to produce powerful second-order nonlinear optical effects, such as second harmonic generation and electro-optic effect, in bulk diamonds,” senior author Professor Muneaki Hase says.

The team used chemical vapor-deposited single-crystal diamonds (from Element Six), with extra nitrogen ions implanted to encourage the formation of NV centers. The emission spectrum they observed when the diamonds were excited with 1350-nm light showed clear second- and third-order harmonic peaks (Figure 1). These observations represent the merging of two or three photons, respectively, into a single photon of higher energy. “In addition to new photonic devices, second-order nonlinear optical effect by NV centers in diamonds might be used as the basis of quantum sensing of electromagnetic fields,” first author Dr. Aizitiaili Abulikemu says. Because diamonds are already used in industrial applications, they have the advantage of being relatively easily applicable to optical uses.

###

The work has been published in ACS Photonics as “Second-harmonic generation in bulk diamond based on inversion symmetry breaking by color centers.” (DOI: 10.1021/acsphotonics.0c01806).

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsphotonics.0c01806

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectromagneticsIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.