• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Developing bottom drifters to better understand the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts

Bioengineer by Bioengineer
September 12, 2023
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the University of Rhode Island and the Northeast Fisheries Science Center have made significant progress in understanding the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts. Their research, published in PeerJ Life & Environment titled “Developing bottom drifters to better understand the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts,” sheds new light on the critical issue of juvenile sea turtles’ vulnerability to rapidly declining water temperatures during the fall season.

Miniboat

Credit: Educational Passages

Scientists from the University of Rhode Island and the Northeast Fisheries Science Center have made significant progress in understanding the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts. Their research, published in PeerJ Life & Environment titled “Developing bottom drifters to better understand the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts,” sheds new light on the critical issue of juvenile sea turtles’ vulnerability to rapidly declining water temperatures during the fall season.

Cold-stunning occurs when sea turtles lose mobility due to extreme hypothermia, leading them to become stranded at the shoreline. The phenomenon poses a significant threat to the survival of these vulnerable marine creatures, prompting rescue teams affiliated with the Sea Turtle Stranding and Salvage Network to conduct search and recovery efforts to save them.

In the pursuit of improving the understanding of stranding hotspots and increasing the likelihood of successful discovery and recovery of cold-stunned sea turtles, the research team recognized the importance of comprehending the effects of ocean currents on potential stranding locations. Prior research utilizing traditional oceanographic drifters—tools used to track currents—yielded valuable insights but did not account for sea turtle morphology and how bottom currents impact stranding locations.

To address these critical knowledge gaps, the team of scientists developed innovative drifters designed to mimic the shape and dimensions of sea turtles. These new drifters consisted of two types — one capable of floating at the surface and the other sinking to the ocean floor — to track both surface and bottom currents in Cape Cod Bay accurately.

The results of the study revealed a significant difference between the trajectories of the newly designed drifter models and those previously used for similar research. This novel finding represents a substantial step forward in identifying the transport pathways for cold-stunned sea turtles in Cape Cod Bay.

“Sea turtle conservation relies heavily on volunteers for the recovery of stranded sea turtles and this research helps to improve these efforts—bringings us one step closer to decreasing the time turtles and volunteers spend in harsh winter conditions. Research like this also brings community members together through outreach and engagement.” – Lead Author Felicia M. Page

The study’s findings hold promising implications for conservationists, rescue teams, and researchers dedicated to protecting cold-stunned sea turtles. By gaining deeper insights into the factors influencing sea turtle stranding locations, rescue operations can be optimized, potentially saving more lives and aiding in the preservation of these majestic creatures.

About the University of Rhode Island: The University of Rhode Island is a renowned public research university committed to fostering innovation, advancing knowledge, and creating a positive impact on society through cutting-edge research across various disciplines.

About the Northeast Fisheries Science Center: The Northeast Fisheries Science Center is a leading institution dedicated to studying and managing marine fisheries in the Northeast region of the United States. Their work contributes significantly to understanding and conserving marine ecosystems and resources.

 



Journal

PeerJ

DOI

10.7717/peerj.15866

Article Title

Developing bottom drifters to better understand the stranding locations of cold-stunned sea turtles in Cape Cod Bay, Massachusetts

Article Publication Date

30-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Flowering Plant Gene Regulation: Recruitment, Rewiring, Conservation

Flowering Plant Gene Regulation: Recruitment, Rewiring, Conservation

July 15, 2025
blank

Single-Cell Map Unveils Lung Aging After Tuberculosis

July 14, 2025

Wounding Triggers Multi-Layered Leaf Barriers via Hormones

July 14, 2025

Correcting Insights: Evolution of Leaf Venation Networks

July 11, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling Cobalt Sites in Acidic Water Oxidation

Decoding Cellular Motion Through Spatial Transcriptomics

Maternal BMI’s Impact on Offspring Metabolism Revealed

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.