• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Deep-learning-designed diffractive processor computes hundreds of transformations in parallel

Bioengineer by Bioengineer
January 9, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In today’s digital age, computational tasks have become increasingly complex. This, in turn, has led to an exponential growth in the power consumed by digital computers. Thus, it is necessary to develop hardware resources that can perform large-scale computing in a fast and energy-efficient way.

Massively parallel universal linear transformations using a wavelength-multiplexed diffractive deep neural network.

Credit: Image courtesy of Ozcan Research Group, UCLA.

In today’s digital age, computational tasks have become increasingly complex. This, in turn, has led to an exponential growth in the power consumed by digital computers. Thus, it is necessary to develop hardware resources that can perform large-scale computing in a fast and energy-efficient way.

In this regard, optical computers, which use light instead of electricity to perform computations, are promising. They can potentially provide lower latency and reduced power consumption, benefiting from the parallelism that optical systems have. As a result, researchers have explored various optical computing designs. For instance, a diffractive optical network is designed through the combination of optics and deep learning to optically perform complex computational tasks such as image classification and reconstruction. It comprises a stack of structured diffractive layers, each having thousands of diffractive features/neurons. These passive layers are used to control light–matter interactions to modulate the input light and produce the desired output. Researchers train the diffractive network by optimizing the profile of these layers using deep learning tools. After the fabrication of the resulting design, this framework acts as a standalone optical processing module that only requires an input illumination source to be powered.

So far, researchers have successfully designed monochromatic, or single wavelength illumination, diffractive networks for implementing a single linear transformation (matrix multiplication) operation. But is it possible to implement many more linear transformations simultaneously? The same UCLA research group that first introduced the diffractive optical networks has recently addressed this question. In a recent study published in Advanced Photonics, they employed a wavelength multiplexing scheme in a diffractive optical network and showed the feasibility of using a broadband diffractive processor to perform massively parallel linear transformation operations.

UCLA Chancellor’s Professor Aydogan Ozcan, the leader of the research group at the Samueli School of Engineering, briefly describes the architecture and principles of this optical processor: “A broadband diffractive optical processor has input and output field-of-views with Ni and No pixels, respectively. They are connected by successive structured diffractive layers, made of passive transmissive materials. A predetermined group of Nw discrete wavelengths encodes the input and output information. Each wavelength is dedicated to a unique target function or complex-valued linear transformation,” he explains. “These target transformations can be specifically assigned for distinct functions such as image classification and segmentation, or they can be dedicated to computing different convolutional filter operations or fully connected layers in a neural network. All these linear transforms or desired functions are executed simultaneously at the speed of light, where each desired function is assigned to a unique wavelength. This allows the broadband optical processor to compute with extreme throughput and parallelism.”

The researchers demonstrated that such a wavelength-multiplexed optical processor design can approximate Nw unique linear transformations with a negligible error when its total number of diffractive features N is more than or equal to 2wio. This conclusion was confirmed for w > 180 distinct transformations through numerical simulations and is valid for materials with different dispersion properties. Moreover, the use of a larger N (3wio) increased w further to around 2000 unique transformations that are in parallel executed all optically.  

Regarding prospects of this new computing design, Ozcan remarks, “Such massively parallel, wavelength-multiplexed diffractive processors will be useful for designing high-throughput intelligent machine vision systems and hyperspectral processors, and could inspire numerous applications across various fields, including biomedical imaging, remote sensing, analytical chemistry, and material science.” 

Read the Gold Open Access article by J. Li et al., “Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network,” Adv. Photon. 5(1), 016003 (2023), doi 10.1117/1.AP.5.1.016003.



Journal

Advanced Photonics

DOI

10.1117/1.AP.5.1.016003

Article Title

Massively parallel universal linear transformations using a wavelength-multiplexed diffractive optical network

Article Publication Date

9-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Katerina Mastovska

Dr. Katerina Mastovska named AOAC INTERNATIONAL Deputy Executive Director and Chief Science Officer

January 27, 2023
magnetar eruption

Volcano-like rupture could have caused magnetar slowdown

January 27, 2023

Stability of perovskite solar cells reaches next milestone

January 27, 2023

From AI software to surgical robots

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In