• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Daylight damage-saving time

Bioengineer by Bioengineer
December 2, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Kanazawa University studies the process by which the performance of advanced solar cells degrades over time; this work may help promote the adoption of renewable energy produced by robust, high-efficiency organic photovoltaics

IMAGE

Credit: Kanazawa University


Kanazawa, Japan – Researchers at Kanazawa University performed a detailed investigation of the molecular mechanisms by which organic solar cells suffer damage as they are exposed to sunlight. This research has important implications for developing next-generation solar sheets that combine high efficiency, low cost, and long device lifetimes.

Solar power represents an important element of future renewable energy solutions. Historically, solar panels have tended to be inefficient or else too expensive for most homeowners to consider installing. A new class of solar cells that utilizes layers of carbon-based polymers offers efficiency of up to 10% – which is considered the minimum for practical use – at an affordable price point. The primary remaining obstacle to wide adoption of these new photovoltaics is the short lifetime of these devices because cumulative damage from the sun tends to erode their performance. Owing to the multilayer nature of the devices, it is often difficult to identify molecular mechanism by which this degradation of efficacy occurs over time.

Now, based on the results of current-voltage curves, impedance spectroscopy, and UV-VIS spectrophotometry, a research team at Kanazawa University has determined an important factor that can cause reduced performance. Similar to the way your carbon-based skin cells can get a nasty sunburn from the sun’s ultraviolet light after a day at the beach, the researchers found that the fragile organic molecules in the semiconducting layer can be damaged from exposure.

“We found that damage from UV light increased the electrical resistance of the organic semiconductor layer,” first author Makoto Karakawa says. This led to reduced current flow and thus an overall decrease in efficiency. Using a method known as matrix assisted laser desorption/ionization time-of-flight, the researchers determined the likely degradation products from solar damage. When some sulfur atoms in the materials get replaced by oxygen atoms from the atmosphere, the molecules no longer function as intended.

“While new organic semiconductor materials have allowed us to drastically increase overall efficiency, we found that they tend to be more fragile to UV damage,” senior author Kohshin Takahashi explains. Based on this understanding, it may be possible to design more robust devices that still maintain their high energy conversion rate, which is an important step to making solar an even larger portion of renewable energy generation.

###

Media Contact
Tomoya Sato
[email protected]
81-762-645-076

Related Journal Article

http://dx.doi.org/10.1016/j.orgel.2019.105448

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsMolecular PhysicsOpticsPolymer ChemistrySuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

In-Mouth Hydrogel Delivers Artificial Saliva for Effective Dry Mouth Relief

August 13, 2025
blank

Unlock the Power of Cannabis Leaves: A Hidden Treasure of Rare Compounds

August 13, 2025

Breakthrough in Wafer-Scale Nano-Fabrication Enables Multi-Layer Diffractive Optical Processors for Unidirectional Visible Imaging

August 13, 2025

Polymer Connectivity Controls Solid-State Electrophotocatalysis

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seashells Propel Innovative Approaches to Plastic Recycling

Combining Dual Immune Checkpoint Inhibition with Radiotherapy Fails to Enhance Progression-Free Survival in Newly Diagnosed MGMT-Unmethylated Glioblastoma Patients

In-Mouth Hydrogel Delivers Artificial Saliva for Effective Dry Mouth Relief

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.