• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Crystal structure prediction of multi-elements random alloy

Bioengineer by Bioengineer
March 17, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

Alchemy, which attempted to turn cheap metals such as lead and copper into gold, has not yet succeeded. However, with the development of alloys in which two or three auxiliary elements are mixed with the best elements of the times, modern alchemy can produce high-tech metal materials with high strength, such as high entropy alloys. Now, together with artificial intelligence, the era of predicting the crystal structure of high-tech materials has arrived without requiring repetitive experiments.

A joint research team of Professor Ji Hoon Shim and Dr. Taewon Jin (first author, currently at KAIST) of POSTECH’s Department of Chemistry, and Professor Jaesik Park of POSTECH Graduate School of Artificial Intelligence have together developed a system that predicts the crystal structures of multi-element alloys with expandable features without needing massive training data. These research findings were recently published in Scientific Reports.

Properties of solid-state materials depend on their crystal structures. In solid solution high entropy alloy (HEA) – a material that has the same crystal structure but continuously changes its chemical composition within a certain range – mechanical properties such as strength and ductility vary depending on the structural phase. Therefore, predicting the crystal structure of a material plays a crucial role in finding new functional materials. Methods to predict the crystal structure through machine learning have been studied recently, but there is an enormous cost attached to prepare the data necessary for training.

To this, the research team designed an artificial intelligence model that predicts the crystal structure of HEAs through expandable features and binary alloy data instead of the conventional models that use more than 80% of the HEA data in the training process. This is the first study to predict the crystal structure of multi-element alloys, including HEAs, with an artificial intelligence model trained only with the compositions and structural phase data of binary alloys.

Through experiments, the researchers confirmed that the structural phase of the multi-element alloy was predicted with an accuracy of 80.56%, even though the multi-element alloy data were not involved in the training process. In the case of HEAs, it was predicted with an accuracy of 84.20%. According to the method developed by the research team, it is anticipated that the calculation cost can be saved by about 1,000 times compared to previous methods.

“An immense dataset is required to apply an artificial intelligence methodology to the development of new materials,” explained Professor Ji Hoon Shim who led the research. “This study is significant in that it enables to effectively predict the crystal structure of advanced materials without securing a huge data set.”

###

The research was conducted with the support from the National Research Foundation, POSTECH Graduate School of Artificial Intelligence Institute of Information & Communications Technology Planning and Evaluation (IITP) and the SRC Center for Quantum Dynamics.

Media Contact
Jinyoung Huh
[email protected]

Original Source

http://postech.ac.kr/eng/crystal-structure-prediction-of-multi-elements-random-alloy/

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-84544-8

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsPolymer ChemistryResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Recursive Enzymatic Network Enables Multitask Molecular Processing

Recursive Enzymatic Network Enables Multitask Molecular Processing

October 17, 2025

How Focus Sharpens Sound Processing: The Brain’s Path to Better Listening

October 17, 2025

Eliminating Uncertainty in Shock Wave Predictions Through Advanced Computational Modeling

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1264 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    296 shares
    Share 118 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of GMAW and SMAW on E350 Steel Properties

Unveiling Sex-Switching in Silver Pomfret Juveniles

Exploring Motor Differences in Neurodivergence: Initial Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.