• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

CRISPR reveals the secret life of antimicrobial peptides

Bioengineer by Bioengineer
February 26, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mark Austin Hanson, EPFL

When it comes to the immune system, we usually think about lymphocytes like B and T cells or macrophages going on constant seek-and-destroy missions against invading pathogens like bacteria and viruses. But our immune system actually includes a lesser-known and less-studied first line of defense referred to as “innate immunity”.

One of the main weapons of innate immunity are a family of small peptides, collectively known as “antimicrobial peptides” or AMPs for short. AMPs are produced by the host’s (e.g. the human’s) cells and combat invading microorganisms by breaking apart their cell membranes or by disrupting their functions.

Despite their importance, we know very little about AMPs. Some in vitro studies have shown that they can kill bacteria and fungi, but scientists have been hard pressed to study them in living organisms. One of the reasons is that there are simply too many factors involved in innate immunity, so isolating the effect of individual AMPs in a living organism is a very complex proposition.

But now we have the tools. Scientists from the lab of Bruno Lemaitre at EPFL’s Global Health Institute have used CRISPR, the gene-editing technique, to delete no less than 14 AMPs from the fruit fly Drosophila. By deleting single AMP genes, various combinations of genes, or even all 14 genes, the scientists were able to remove their corresponding AMPs and observe how their absence affected the fly’s resistance to different bacterial and fungal pathogens.

The results showed that, at least in Drosophila, AMPs act mainly against Gram-negative bacteria (e.g. E. coli, Enterobacter species) and certain fungi. The AMPs also work either together or by adding up their individual effects. Surprisingly, they found that certain AMPs can be incredibly specific in defending against certain infections (e.g. the AMP diptericin against the pathogen P. rettgeri). This unexpected result highlights a previously unknown level of specificity to the innate immune response.

“What’s really exciting is that these results will help us understand how our own AMPs might help fight infection,” says Mark Austin Hanson, the study’s first author. “It could be that some people have a defective copy of a specific AMP needed to prevent a common infection – as an example, uropathogenic E. coli – and so they are at higher risk. Fighting infection is great, but learning how to prevent it in the first place is the ideal of medicine. That’s what these AMPs do: they prevent infection before it ever settles in.”

But the applications of studying AMPs go even further, Hanson adds. “Studying how the fly’s AMPs work can also help us manage economically important insects, whether it be protecting bumblebees or preventing mosquitoes from spreading disease.”

###

Other contributors

University of Paris-Saclay

National Institute of Genetics (Japan)

Reference

Mark Austin Hanson, Anna Dostalova, Camilla Ceroni, Mickael Poidevin, Shu Kondo, Bruno Lemaitre. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife 26 February 2019. DOI: 10.7554/eLife.44341

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.7554/eLife.44341

Tags: BiologyBiotechnologyCell BiologyGenesGeneticsImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Rj4 Immunity Network Limits Soybean-Rhizobia Symbiosis

Rj4 Immunity Network Limits Soybean-Rhizobia Symbiosis

November 1, 2025
blank

Reevaluating Xylotini: Codon Bias and Phylogenetic Insights

November 1, 2025

Exploring Symbiotic Diversity in Moroccan Bradyrhizobium

October 31, 2025

Unexpected Breakthrough: Student’s Research Uncovers Crucial New Insights into HPV

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between ARFID and Autism: A Case Study

Revolutionizing Congenital Heart Disease with 3D Innovations

Economic Impact and Solutions for Diabetic Ketoacidosis in UAE

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.