• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 24, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Could SARS-CoV-2 evolve resistance to COVID-19 vaccines?

Bioengineer by Bioengineer
November 9, 2020
in Immunology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kennedy et al, 2020 (PLOS Biology, CC BY 4.0)

UNIVERSITY PARK, Pa. — Similar to bacteria evolving resistance to antibiotics, viruses can evolve resistance to vaccines, and the evolution of SARS-CoV-2 could undermine the effectiveness of vaccines that are currently under development, according to a paper published November 9 in the open-access journal PLOS Biology by David Kennedy and Andrew Read from Pennsylvania State University, USA. The authors also offer recommendations to vaccine developers for minimizing the likelihood of this outcome.

“A COVID-19 vaccine is urgently needed to save lives and help society return to its pre-pandemic normal,” said David Kennedy, assistant professor of biology. “As we have seen with other diseases, such as pneumonia, the evolution of resistance can quickly render vaccines ineffective. By learning from these previous challenges and by implementing this knowledge during vaccine design, we may be able to maximize the long-term impact of COVID-19 vaccines.”

The researchers specifically suggest that the standard blood and nasal-swab samples taken during clinical trials to quantify individuals’ responses to vaccination may also be used to assess the likelihood that the vaccines being tested will drive resistance evolution. For example, the team proposes that blood samples can be used to assess the redundancy of immune protection generated by candidate vaccines by measuring the types and amounts of antibodies and T-cells that are present.

“Much like how combination antibiotic therapy delays the evolution of antibiotic resistance, vaccines that are designed to induce a redundant immune response — or one in which the immune system is encouraged to target multiple sites, called epitopes — on the virus’s surface, can delay the evolution of vaccine resistance,” said Andrew Read, Evan Pugh Professor of Biology and Entomology and director of the Huck Institutes of the Life Sciences. “That’s because the virus would have to acquire several mutations, as opposed to just one, in order to survive the host immune system’s attack.”

The researchers also recommend that nasal swabs typically collected during clinical trials may be used to determine the viral titer, or amount of virus present, which can be considered a proxy for transmission potential. They noted that strongly suppressing virus transmission through vaccinated hosts is key to slowing the evolution of resistance, since it minimizes opportunities for mutations to arise and reduces opportunities for natural selection to act on those mutations that do arise.

In addition, the team suggests that the genetic data acquired through nasal swabs can be used to examine whether vaccine-driven selection has occurred. For example, differences in alleles, or forms of genes that arise from mutations, between the viral genomes collected from vaccinated versus unvaccinated individuals would indicate that selection has taken place.

“According to the World Health Organization, at least 198 COVID-19 vaccines are in the development pipeline, with 44 currently undergoing clinical evaluation,” said Kennedy. “We suggest that the risk of resistance be used to prioritize investment among otherwise similarly promising vaccine candidates.”

###

Media Contact
Sara LaJeunesse
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3001000

Tags: EvolutionImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthVaccinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Sulfur: the consequences

February 24, 2021
IMAGE

Human lung and brain organoids respond differently to SARS-CoV-2 infection in lab tests

February 24, 2021

COVID-19 vaccination axillary adenopathy detected during breast imaging

February 24, 2021

TBE patients’ lasting problems

February 23, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    637 shares
    Share 255 Tweet 159
  • People living with HIV face premature heart disease and barriers to care

    81 shares
    Share 32 Tweet 20
  • Global analysis suggests COVID-19 is seasonal

    37 shares
    Share 15 Tweet 9
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyPublic HealthMedicine/HealthEcology/EnvironmentGeneticsInfectious/Emerging DiseasesCell BiologyClimate ChangeTechnology/Engineering/Computer ScienceMaterialsChemistry/Physics/Materials Sciencescancer

Recent Posts

  • UM scientists achieve breakthrough in culturing corals and sea anemones cells
  • CAR T-cell therapy generates lasting remissions in patients with multiple myeloma
  • Bearded seals are loud — but not loud enough
  • Study finds human-caused North Atlantic right whale deaths are being undercounted
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In