• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, February 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Closing the gap on the missing lithium

Bioengineer by Bioengineer
July 1, 2021
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers account for some of the lithium missing from our universe

IMAGE

Credit: ©2021 Hayakawa et al.

There is a significant discrepancy between theoretical and observed amounts of lithium in our universe. This is known as the cosmological lithium problem, and it has plagued cosmologists for decades. Now, researchers have reduced this discrepancy by around 10%, thanks to a new experiment on the nuclear processes responsible for the creation of lithium. This research could point the way to a more complete understanding of the early universe.

There is a famous saying that, “In theory, theory and practice are the same. In practice, they are not.” This holds true in every academic domain, but it’s especially common in cosmology, the study of the entire universe, where what we think we should see and what we really see doesn’t always match up. This is largely because many cosmological phenomena are difficult to study due to inaccessibility. Cosmological phenomena are usually out of our reach because of the extreme distances involved, or often they have occurred before the human brain had even evolved to worry about them in the first place — such is the case with the big bang.

Project Assistant Professor Seiya Hayakawa and Lecturer Hidetoshi Yamaguchi from the Center for Nuclear Study at the University of Tokyo, and their international team are especially interested in one area of cosmology where theory and observation are very misaligned, and that is the issue of the missing lithium, the cosmological lithium problem (CLP). In a nutshell, theory predicts that in the minutes following the big bang that created all matter in the cosmos, there should be an abundance of lithium around three times greater than what we actually observe. But Hayakawa and his team accounted for some of this discrepancy and have thus paved the way for research that may one day resolve it entirely.

“13.7 billion years ago, as matter coalesced from the energy of the big bang, common light elements we all recognize — hydrogen, helium, lithium and beryllium — formed in a process we call Big Bang nucleosynthesis (BBN),” said Hayakawa. “However, BBN is not a straightforward chain of events where one thing becomes another in sequence; it is actually a complex web of processes where a jumble of protons and neutrons builds up atomic nuclei, and some of these decay into other nuclei. For example, the abundance of one form of lithium, or isotope — lithium-7 — mostly results from the production and decay of beryllium-7. But it has either been overestimated in theory, underobserved in reality, or a combination of the two. This needs to be resolved in order to really understand what took place way back then.”

Lithium-7 is the most common isotope of lithium, accounting for 92.5% of all observed. However, even though the accepted models of BBN predict the relative amounts of all elements involved in BBN with extreme accuracy, the expected amount of lithium-7 is around three times greater than what is actually observed. This means there is a gap in our knowledge about the formation of the early universe. There are several theoretical and observational approaches which aim to resolve this, but Hayakawa and his team simulated conditions during BBN using particle beams, detectors and an observational method known as the Trojan horse.

“We scrutinized more than ever before one of the BBN reactions, where beryllium-7 and a neutron decay into lithium-7 and a proton. The resulting levels of lithium-7 abundance were slightly lower than anticipated, about 10% lower,” said Hayakawa. “This is a very difficult reaction to observe since beryllium-7 and neutrons are unstable. So we used deuteron, a hydrogen nucleus with an extra neutron, as a vessel to smuggle a neutron into a beryllium-7 beam without disturbing it. This is a unique technique, developed by an Italian group we collaborate with, in which the deuteron is like the Trojan horse in Greek myth, and the neutron is the soldier who sneaks into the impregnable city of Troy without tipping off the guards (destabilizing the sample). Thanks to the new experimental result, we can offer future theoretical researchers a slightly less daunting task when trying to resolve the CLP.”

###

Journal article

S. Hayakawa, M. La Cognata, L. Lamia, H. Yamaguchi, D. Kahl, K. Abe, H. Shimizu, L. Yang, O. Beliuskina, S. M. Cha, K. Y. Chae, S. Cherubini, P. Figuera, Z. Ge, M. Gulino, J. Hu, A. Inoue, N. Iwasa, A. Kim, D. Kim, G. Kiss, S. Kubono, M. La Commara, M. Lattuada, E. J. Lee, J. Y. Moon, S. Palmerini, C. Parascandolo, S. Y. Park, V. H. Phong, D. Pierroutsakou, R. G. Pizzone, G. G. Rapisarda, S. Romano, C. Spitaleri, X. D. Tang, O. Trippella, A. Tumino, and N. T. Zhang, “Constraining the Primordial Lithium Abundance: New Cross-Section Measurement of the 7Be + n Reactions Updates the Total 7Be Destruction Rate” Astrophysical Journal Letters,

Funding

This works was supported by JSPS KAKENHI (Grant Nos. 15K17631, 18K13556 and 19K03883). K. Y. C. and S. M. C. were supported by National Research Foundation of Korea (Nos. 2020R1I1A1A01065120, 2020R1A2C1005981, 2019K2A9A2A10018827, and 2016R1A5A1013277). D. K. would like to thank the UK STFC for support. G. G. K. acknowledges the supports by NKFIH (NN128072) and from the Janos Bolyai research fellowship of the Hungarian Academy of Sciences and from UNKP-20-5-DE-2 New National Excellence Program of the Ministry of Human Capacities of Hungary. The authors acknowledge Finanziamenti di Linea 2 and Starting Grant 2020 by University of Catania.

Useful links

Center for Nuclear Study

Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud

Department of Physics, Sungkyunkwan University

Research contact information

Project Assistant Professor Seiya Hayakawa

Center for Nuclear Study, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN

Email: [email protected]

Press Contact

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Seiya Hayakawa
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00184.html

Related Journal Article

http://dx.doi.org/10.3847/2041-8213/ac061f

Tags: AstronomyAstrophysicsChemistry/Physics/Materials SciencesNuclear PhysicsParticle PhysicsStars/The Sun
Share14Tweet9Share2ShareShareShare2

Related Posts

University of Houston researchers Chandra Mohan and Richard Willson

Early diagnosis and monitoring of lupus nephritis – on your smartphone

February 1, 2023
Assistant Professor Jo Philips

Uncovering the secrets of electron-eating microorganisms

February 1, 2023

Anna Lee appointed AIP Foundation Executive Director

February 1, 2023

First solid scientific evidence that Vikings brought animals to Britain

February 1, 2023
Please login to join discussion

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How do you create buildings that can withstand the most extreme stress loads?

Genes responsible for coronary artery disease, world’s No. 1 killer, identified

Tuberculosis vaccine does not protect elderly against COVID-19

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In