• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Casting light on the brain’s inner workings

Bioengineer by Bioengineer
February 11, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biomedical engineering researchers have developed a device that could provide unique insight into the mechanisms of pain, depression, addiction and certain diseases by observing the brain at the single-neuron level

IMAGE

Credit: University of Arizona Gutruf Lab


The mammalian brain is the most complex organ in the body, capable of processing thousands of stimuli simultaneously to analyze patterns, predict changes and generate highly measured action. How the brain does all this – within fractions of a second – is still largely unknown.

Implants that can probe the brain at the individual neuron level are not widely available to researchers. Studying neuron activity while the body is in motion in an everyday setting is even more difficult, because monitoring devices typically involve wires connecting a study participant to a control station.

Researchers at the University of Arizona, George Washington University and Northwestern University have created an ultra-small, wireless, battery-free device that uses light to record individual neurons so neuroscientists can see how the brain is working. The technology is detailed in a study in the Proceedings of the National Academy of Sciences.

“As biomedical engineers, we are working with collaborators in neuroscience to improve tools to better understand the brain, specifically how these individual neurons – the building blocks of the brain – interact with each other while we move through the world around us,” said lead study author Alex Burton, a University of Arizona biomedical engineering doctoral student and member of the Gutruf Lab.

The process first involves tinting select neurons with a dye that changes in brightness depending on activity. Then, the device shines a light on the dye, making the neurons’ biochemical processes visible. The device captures the changes using a probe only slightly wider than a human hair, then processes a direct readout of the neuron’s activity and transmits the information wirelessly to researchers.

“The device is smaller than a single M&M and only one-twentieth of the weight,” Burton said.

The device can be tiny, and even flexible like a sheet of paper, because it does not need a battery. It harvests energy from external oscillating magnetic fields gathered by a miniature antenna on the device. This allows researchers to study brain activity without the use of restrictive equipment and gives neuroscientists a platform to gain insight into the underpinning mechanisms of the brain.

“When creating the device, we used materials and methods that are readily available and cheap enough to enable large-scale adaptation of the tool by the scientific community,” said study senior author Philipp Gutruf, who leads the Gutruf Lab and is an assistant professor of biomedical engineering and member of the university’s BIO5 Institute. “We hope that the technology can make a difference in fighting neurodegenerative diseases such as Alzheimer’s and Parkinson’s and cast light on the biological mechanisms, such as pain, addiction and depression.”

###

Media Contact
Emily Dieckman
[email protected]
520-621-1992

Original Source

https://news.engineering.arizona.edu/news/tiny-wireless-devices-cast-light-brain-s-inner-workings

Related Journal Article

http://dx.doi.org/10.1073/pnas.1920073117

Tags: AlzheimerBiomedical/Environmental/Chemical EngineeringBiotechnologyneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

St. Louis and Dallas Scientists Recognized with First-Ever Jack Sarver Prize for Pioneering Research

October 23, 2025
blank

Extended HPG Axis Reduces Late-Life Frailty in Male Dogs

October 23, 2025

Widely Recognized Toxin Implicated in Liver Disease Uncovered

October 23, 2025

Nanobody BioPROTAC Targets YAP to Halt Tumors

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1276 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    161 shares
    Share 64 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

St. Louis and Dallas Scientists Recognized with First-Ever Jack Sarver Prize for Pioneering Research

Extended HPG Axis Reduces Late-Life Frailty in Male Dogs

Widely Recognized Toxin Implicated in Liver Disease Uncovered

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.