• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Cardioids — heartbeat, heartbreak and recovery in a dish

Bioengineer by Bioengineer
May 20, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Mendjan/IMBA

Self-organizing heart organoids developed at IMBA – Institute of Molecular Biotechnology of the Austrian Academy of Sciences – are also effective injury- and in vitro congenital disease models. These “cardioids” may revolutionize research into cardiovascular disorders and malformations of the heart. The results are published in the journal Cell.

About 18 million people die each year from cardiovascular diseases, making them the leading cause of fatalities globally. Moreover, the most prevalent birth defects in children pertain to the heart. Currently, a major bottleneck in understanding human heart malformations and developing regenerative therapies are missing human physiological models of the heart.

The research group of Sasha Mendjan established cardioids at IMBA – human self-organizing cardiac organoids that recapitulate the lineage architecture of a heart chamber. Mendjan explains: “Cardioids are a major milestone. Our guiding principle is that for an in vitro tissue to be fully physiological, it also needs to undergo organogenesis. We were able to achieve this, using the developmental principles of self-organization – which makes it such an exciting discovery”.

During development, a heart chamber emerges from the mesoderm germ layer. The researchers thus established in vivo-like mesodermal signaling conditions guiding pluripotent stem cells. “Amazingly, this led to self-organization of a heart chamber-like structure that was beating. For the first time, we could observe something like this in a dish. It is a simple, robust and scalable model, and does not require addition of exogenous extracellular matrix like many other organoid models,” explains Sasha Mendjan. Besides a beating myocardial layer, a functional heart also contains an inner endothelial lining that later contributes to heart vasculature, and an outer epicardial layer that directs heart growth and regeneration. Cardioids recapitulate this three layered structure, shaping a heart chamber-like structure.

The scientists determined how signaling and transcription factors control cardioid chamber formation. For instance, the team was able to phenocopy the dramatic chamber cavity loss observed in children with Hypoplastic Left Heart Syndrome in cardioids by disrupting a transcription factor linked to this defect. The researchers also assessed the effects of cryoinjury (injury by freezing), a technique mimicking myocardial infarction, on cardioids. For the first time in a dish, the team found that this injury triggers an in vivo-like accumulation of extracellular matrix proteins in cardioids, an early hallmark of both regeneration and fibrotic heart disease.

The self-organizing organoid field has revolutionized biomedical research over the past decade. However, the heart was the last major inner organ missing such a physiological model capable of recapitulating developmental and injury response processes. “Cardioids bear incredible potential to unravel human congenital heart defects. As the system is physiological and scalable, this opens up huge possibilities for drug discovery and regenerative medicine,” says Sasha Mendjan.

###

This technology developed at IMBA has led to the creation of HeartBeat.bio, a new IMBA spin-off focused on the development of a high-throughput 3D screening platform for heart failure and cardiomyopathies. To the HeartBeat.bio website: https://heartbeat.bio/ .

Original publication:
Hofbauer P, Jahnel SM, Papai N, et al., “Cardioids reveal self-organizing principles of human cardiogenesis”, Cell, 2021. DOI: 10.1016/j.cell.2021.04.034
https://www.cell.com/cell/fulltext/S0092-8674(21)00537-7

About IMBA

IMBA – Institute of Molecular Biotechnology – is one of the leading biomedical research institutes in Europe focusing on cutting-edge stem cell technologies, functional genomics, and RNA biology. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. The stem cell and organoid research at IMBA is being funded by the Austrian Federal Ministry of Science and the City of Vienna.

Media Contact
Daniel F. Azar
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2021.04.034

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyCardiologyCell BiologyDevelopmental/Reproductive BiologyMedicine/HealthPhysiologyStroke
Share13Tweet8Share2ShareShareShare2

Related Posts

Mirror-Image Molecules Uncover Drought Stress in the Amazon Rainforest

Mirror-Image Molecules Uncover Drought Stress in the Amazon Rainforest

September 5, 2025
blank

Innovative Non-Volatile Memory Platform Developed Using Covalent Organic Frameworks

September 5, 2025

Breakthroughs in Transition Metal Electrocatalysts for Microbial Electrolysis Cells: From Nanoscale Engineering to Large-Scale Applications

September 5, 2025

Innovative Barkhausen Noise Measurement System Paves the Way for More Efficient Power Electronics

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

JAMA Network Introduces JAMA+ Women’s Health Platform

Mirror-Image Molecules Uncover Drought Stress in the Amazon Rainforest

Triazophos Effects on Immune Responses in Snakehead Fish

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.