• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Can stem cells help a diseased heart heal itself? Researcher achieves important milestone

Bioengineer by Bioengineer
December 16, 2018
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New study shows how newly created cardiac muscle cells can be made to pump together

IMAGE

Credit: John Emerson


A team of Rutgers scientists, including Leonard Lee and Shaohua Li, have taken an important step toward the goal of making diseased hearts heal themselves – a new model that would reduce the need for bypass surgery, heart transplants or artificial pumping devices.

The study, recently published in Frontiers in Cell and Developmental Biology, involved removing connective tissue cells from a human heart, “reverse-engineering” them into heart stem cells, then “re-engineering” them into heart muscle cells.

The Rutgers team’s true breakthrough, however, is that the newly created cardiac muscle cells clumped together into a single unit that visibly pumps under the microscope.

Senior author Leonard Y. Lee, chair of the Department of Surgery at Rutgers Robert Wood Johnson Medical School, said cardiac cells made in this way don’t normally come together and beat as one. His team succeeded in making this happen by over-expressing, a protein in the cells called CREG.

According to Lee, fibroblasts, a cell in connective tissue, were isolated from the heart tissue and reverse-engineered – or transformed – into stem cells. This was done so that when the CREG protein was over expressed the stem cells would differentiate into cardiac cells.

“Heart failure has reached epidemic proportions. Right now, the only option to treat it is surgery, transplant, or connecting the patient with a blood-pumping machine,” Lee said. “But transplantable hearts are in short supply and mechanical devices limit the patient’s quality of life. So, we are working for ways to help hearts heal themselves.”

Though still far off, Lee’s ultimate goal is to be able to remove small amounts of a patient’s native heart tissue, use CREG to convert the tissue into cardiac muscles that will work together cohesively, and re-introduce them into the patient’s heart allowing it to heal itself.

More than six million Americans are living with heart failure, according to the American Heart Association. While most people hear the term “heart failure” and think this means the heart is no longer working at all, but it actually means that the heart is not pumping as well as it should be. People with heart failure often experience fatigue and shortness of breath and have difficulty with every day activities such as walking and climbing stairs.

###

Media Contact
Caitlin Coyle
[email protected]
848-445-1955

Original Source

https://news.rutgers.edu/can-stem-cells-help-diseased-heart-heal-itself-rutgers-researcher-achieves-important-milestone/20181211#.XBPeN89Kg8Y

Related Journal Article

http://dx.doi.org/10.3389/fcell.2018.00136

Tags: CardiologyCell BiologyCritical Care/Emergency MedicineMedicine/HealthSurgery
Share12Tweet7Share2ShareShareShare1

Related Posts

Immune cells have a sweet tooth

Immune cells in the intestine have a sweet tooth

August 15, 2022
How Posture Affects Taking Pills

The best way to take pills according to science

August 15, 2022

Weird and wonderful world of fungi shaped by evolutionary bursts, study finds

August 15, 2022

Gifted dogs are more playful

August 15, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyUniversity of WashingtonVehiclesVaccinesVaccineUrbanizationWeaponryVirusUrogenital SystemWeather/StormsZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • Today’s heat waves feel a lot hotter than heat index implies
  • Aging | New research: Volume 14, Issue 15
  • New chip could make treating metastatic cancer easier and faster
  • MU math specialists boost knowledge, confidence among elementary school students, teachers
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In