• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Blink and you’ll miss it

Bioengineer by Bioengineer
September 14, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers use light to control high-speed chemical reactions in a new way

IMAGE

Credit: © 2019 Kato et al.

Many natural and synthetic chemical systems react and change their properties in the presence of certain kinds of light. These reactions can occur too quickly for ordinary instruments to see. For the first time, researchers adopted a novel technique to observe the high-speed reactions. A special kind of reaction observed with this method could lead to new optical nanotechnology.

In chemistry, molecules can be manipulated in different ways to produce different things. Isomerization, for example, is a process which changes the arrangement of a molecule but leaves constituent atoms as they are. The process is found in natural systems such as the retina of the eye, and artificial systems like certain kinds of chemical synthesis. In many cases isomerization essentially makes a particular region of molecules either more or less ordered.

Photoisomerization is a type of isomerization which is activated by light and it takes place quicker than the blink of an eye. Professor Takashi Kato from the Department of Chemistry and colleagues subjected liquid-crystal molecules of the chemical compound azobenzene to specific frequencies of UV light. The photoisomerization of a single azobenzene molecule typically occurs on a timescale of hundreds of femtoseconds (quadrillionths of a second). That’s roughly a billionth to a trillionth the time it typically takes you to blink! The researchers found the molecule then triggers molecular interactions in liquid crystals on timescales of hundreds of picoseconds (trillionths of a second).

“We have shown how to change the shape of azobenzene molecules from a straight rod shape to a slightly bent shape in a process triggered by photo-irradiation of UV light. This bending could translate to some mechanical or electronic function,” said Kato. “The reaction propagates through neighboring molecules in the sample, meaning it is an extremely efficient process.”

This reaction does not take place in isolation, however; it occurs within a sample of soft matter the function of which depends on the constituent molecules and their behaviors. In this case, soft matter could mean anything from an artificial muscle to flexible photographic sensors or even things not yet imagined. The important fact is that the initial reaction which typically takes only hundreds of femtoseconds initiates a response in the surrounding soft matter in around a hundred picoseconds, and does so efficiently.

“This is the fastest intermolecular motion ever observed within soft matter. In fact what we wanted to observe was so fast we had to use some very specialized methods to acquire data and to visualize what took place during these miniscule timeframes,” continued Kato. “This would not have been possible without some unique handmade spectral instruments made by my colleague Associate Professor Masaki Hada from the University of Tsukuba.”

The methods are known as ultrafast transient transmission spectroscopy, which is an accurate way to record the makeup of a molecular sample, and ultrafast time-resolved electron diffraction, which is analogous to an X-ray and is how images of the reaction were observed. Note that both methods are called “ultrafast,” which just goes to show other methods would have been insufficient to capture data with the time resolution the researchers desired.

“I have worked on ordered molecular assemblies such as self-assembling systems for more than 35 years as a chemist since I was a graduate student. This research advances the fundamental chemistry of photoresponsive molecules in soft matter as well as their ultrafast photomechanical applications,” concluded Kato. “It is a real privilege for myself and colleagues to work on this kind of project. We hope this may contribute to the design of molecular-based materials such as soft-body mechanisms and photo-functional materials.”

###

Media Contact
Takashi Kato
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00072.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-12116-6

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

Turbulent Flow in Heavily Polluted Tijuana River Elevates Regional Air Quality Risks

August 28, 2025
Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

Unlocking the Potential of In-Between Quantum States to Revolutionize Future Technologies

August 28, 2025

When Ocean Waves Reach the Shoreline

August 28, 2025

Innovative Algorithm Paves the Way for Enhanced Noise Reduction in Quantum Devices

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study Reveals Wildfire Mitigation Strategies Could Reduce Destruction by 50%

Bridging the Gap: Tech Use in German Hospitals

Integrating GLP in Biomedical Education: Academia Meets Industry

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.