• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bleach-induced transformation for humidity-durable air filters

Bioengineer by Bioengineer
June 26, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: DGIST

Adding hydroquinone, a skin-bleaching ingredient, to a well-known ‘metal organic framework’ changes its copper ions in a way that makes this porous material exceptionally stable in water.

“We developed a new method to enhance the water stability of metal organic frameworks, with potential for applications that can effectively filter and purify air from ultrafine dust without decomposing due to humidity,” says DGIST materials scientist Nak Cheon Jeong. The Korean researchers reported their findings in the Journal of the American Chemical Society.

Metal organic frameworks (MOFs) are made from metal ions bonded by organic links. They assemble in a way that leads to the formation of internal cage-like structures, giving the material its porous nature. MOFs have an impressive surface area compared to other porous materials. It is this, and the ability of scientists to tune their structures, that has led to their use in a wide range of applications, including gas uptake, molecule separation, drug delivery, and catalysis. Most MOFs decompose in the presence of humidity and water, so scientists have been looking for ways to make them more durable.

Jeong and his colleagues found that treating a well-known copper-based MOF, called HKUST-1, with hydroquinone at 80°C made the material so stable that it didn’t degrade after weeks of submersion in water or even after two years of exposure to humid air.

Copper ions and their organic links in HKUST-1 assemble to form large and small cages with paddlewheel-shaped metal ion nodes. Normally, water molecules attach to elements within this MOF, displacing the bonds between the copper ions and organic links, and causing the material to degrade or transform into a non-porous solid. Hydroquinone treatment, on the other hand, leads to a very stable HKUST-1 in water.

Jeong and his team found that a single electron from hydroquinone is transferred to cupric ions (Cu2+) within HKUST-1, changing them to cuprous ions (Cu+). This change is self-limiting: no more than 30% of the cupric ions change in this way. Half of the Cu+ ions remain in their positions on HKUST-1’s paddlewheel cages. But the other half form complexes that dissociate from the structure and become trapped within the material’s smaller cages, like a ship-in-a-bottle.

Further studies are needed to understand exactly how these changes lead to such a substantial improvement in HKUST-1’s stability in water.

Jeong and his team believe the same concept could be applied to other copper-based paddlewheel MOFs. They plan to conduct follow-up research on potential practical applications for their approach.

###

Media Contact
Nak Cheon Jeong
[email protected]

Original Source

https://www.dgist.ac.kr/en/html/sub06/060202.html?mode=V&no=669a755c74c225abaed79009ab50a9dc

Related Journal Article

http://dx.doi.org/10.1021/jacs.9b02114

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsBiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMolecular Physics
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Probiotic Potential of β-Galactosidase Lactobacillus rhamnosus

August 6, 2025
blank

Hot Capsicum Extracts Combat Culex and Musca Larvae

August 6, 2025

Impact of Water-Saving Irrigation on Alfalfa Rhizosphere Microbes

August 6, 2025

Centuries After Their Discovery, Red Blood Cells Continue to Reveal New Surprises

August 6, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aging Impairs Pulmonary Endothelial Cell Reprogramming

Element Analysis of Amalgam Reveals Scandinavian Timeframe

Probiotic Potential of β-Galactosidase Lactobacillus rhamnosus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.