• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bird and reptile tears aren’t so different from human tears

Bioengineer by Bioengineer
August 13, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Arianne P. Oriá

Bird and reptile tears aren’t so unlike our own, shows a new study in Frontiers in Veterinary Science. But the differences could provide insights into better ophthalmic treatments for humans and animals, as well as a clues into the evolution of tears across different species.

“Discovering how tears are able to maintain the ocular homeostasis, even in different species and environmental conditions, is crucial for understanding the evolution and adaptation processes, and is essential for the discovery of new molecules for ophthalmic drugs,” says first author Prof. Arianne P. Oriá, of the Federal University of Bahia, in Salvador, Brazil.

Tears play a critical role in maintaining healthy eyesight across species. But up to now, researchers have only studied tears in a short list of mammals, including humans, dogs, horses, monkeys and camels. To get a more complete picture of how tears work in other species, Oriá and her collaborators have now added seven species of birds and reptiles to this list.

“Although birds and reptiles have different structures that are responsible for tear production, some components of this fluid (electrolytes) are present at similar concentrations as what is found in humans,” explains Oriá. “But the crystal structures are organized in different ways so that they guarantee the eyes´ health and an equilibrium with the various environments.”

Oriá and her collaborators worked together with veterinarians from a conservation center, a wild animal care center and a commercial breeder to collect tear samples from healthy captive animals. The study was limited to animals that were kept as pets or as part of conservation efforts, and the researchers collected tears as part of the animals’ normal physical check-ups.

The animals in the study included macaws, hawks, owls and a type of parrot, as well as tortoises, caimans and sea turtles. For comparison, the authors also collected tears from 10 healthy human volunteers.

By looking at the composition of the tears, the authors found that all of the tear types contained similar amounts of electrolytes such as sodium and chloride, although bird and reptile tears had slightly higher concentrations. Owl and sea turtle tears also showed higher levels of urea and protein. After measuring the composition of the tears, the authors also looked at the crystals that formed when the tear fluid dried out. Researchers can use this crystallization pattern to uncover certain types of eye disease, as well as other variations between tear types.

Although the different species had similar tear composition, surprisingly the crystals showed more variation. Sea turtle and caiman tear crystals were particularly unique, probably as an adaptation to their aquatic environments.

Tear research still only reflects a small number of species and this study was limited to captive animals. But future research of additional species could continue to expand our understanding of tear types, and also help guide better treatments for both animals and humans.

“This knowledge helps in the understanding of the evolution and adaption of these species, as well as in their conservation,” adds Prof. Oriá.

###

Media Contact
Mischa Dijkstra
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fvets.2020.00574

Tags: BiochemistryBiologyEvolutionOphthalmologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Titanate Nanotubes Enhance Lithium-Ion Battery Anodes

Harnessing Mitochondrial Biogenesis to Fight Acute Kidney Injury

Groundbreaking Discoveries in Tumor Angiogenesis and the Origins of Endothelial Cells

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.