• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Bioengineers Make Strides Toward Artificial Cartilage

Bioengineer by Bioengineer
December 15, 2013
in Bioengineering, Stem Cells, Tissue Engineering
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A Duke research team has developed a better recipe for synthetic replacement cartilage in joints, according to a report from the Institute.

Bioengineers Make Strides Toward Artificial Cartilage

Combining two innovative technologies they each helped develop, lead authors Farshid Guilak, a professor of orthopedic surgery and biomedical engineering, and Xuanhe Zhao, assistant professor of mechanical engineering and materials science, found a way to create artificial replacement tissue that mimics both the strength and suppleness of native cartilage. Their results appear Dec. 17 in the journal Advanced Functional Materials.

Articular cartilage is the tissue on the ends of bones where they meet at joints in the body – including in the knees, shoulders and hips. It can erode over time or be damaged by injury or overuse, causing pain and lack of mobility. While replacing the tissue could bring relief to millions, replicating the properties of native cartilage — which is strong and load-bearing, yet smooth and cushiony — has proven a challenge.

In 2007 Guilak and his team developed a three-dimensional fabric “scaffold” into which stem cells could be injected and successfully “grown” into articular cartilage tissue. Constructed of minuscule woven fibres, each of the scaffold’s seven layers is about as thick as a human hair. The finished product is about 1 millimetre thick.

Since then, the challenge has been to develop the right medium to fill the empty spaces of the scaffold — one that can sustain compressive loads, provide a lubricating surface and potentially support the growth of stem cells on the scaffold. Materials supple enough to simulate native cartilage have been too squishy and fragile to grow in a joint and withstand loading. “Think Jell-O,” says Guilak. Stronger substances, on the other hand, haven’t been smooth and flexible enough.

That’s where the partnership with Zhao comes in.

Zhao proposed a theory for the design of durable hydrogels (water-based polymer gels) and in 2012 collaborated with a team from Harvard University to develop an exceptionally strong yet pliable interpenetrating-network hydrogel.

“It’s extremely tough, flexible and formable, yet highly lubricating,” Zhao says. “It has all the mechanical properties of native cartilage and can withstand wear and tear without fracturing.”

He and Guilak began working together to integrate the hydrogel into the fabric of the 3-D woven scaffolds in a process Zhao compares to pouring concrete over a steel framework.

In their experiments, the researchers compared the resulting composite material to other combinations of Guilak’s scaffolding embedded with previously studied hydrogels. The tests showed that Zhao’s invention was tougher than the competition with a lower coefficient of friction. And though the resulting material did not quite meet the standards of natural cartilage, it easily outperformed all other known potential artificial replacements across the board, including the hydrogel and scaffolding by themselves.

“From a mechanical standpoint, this technology remedies the issues that other types of synthetic cartilage have had,” says Zhao, founder of Duke’s Soft Active Materials (SAMs) Laboratory. “It’s a very promising candidate for artificial cartilage in the future.”

The team’s next step will likely be to implant small patches of the synthetic cartilage in animal models, according to Guilak and Zhao.

Story Source:

The above story is based on materials provided by Duke University.

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Human stem cells treat spinal cord injury side effects in mice

October 4, 2016
blank

Research into fly development provides insights into blood vessel formation

September 30, 2016

Fertility genes required for sperm stem cells

September 28, 2016

Regulatory RNA essential to DNA damage response

September 27, 2016
Next Post
blank

Scientists Create First Cyborg Sperm

The new class of inhibitors interacts with a specific mutation (Glycine to Cysteine) associated with a number of types of lung cancer.

First Drug to Target Important Cancer Gene

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    68 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthInfectious/Emerging DiseasesBiologycancerCell BiologyMaterialsGeneticsClimate ChangeTechnology/Engineering/Computer ScienceEcology/EnvironmentPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Impact of patient-reported symptom information on lumbar spine MRI Interpretation
  • Governments need to set clear rules for vaccinating health care workers against COVID-19
  • In ED patients with chest and abdominal pain, care delivered by physicians and APPs is similar
  • New book on Influenza: The Cutting Edge from CSHLPress
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In