• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Bioengineered Spider Toxin Could Be the Future of Anti-Venom Vaccines

Bioengineer by Bioengineer
October 31, 2013
in Bioengineering
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bioengineered spider protein could be the start of a new generation of anti-venom vaccines, potentially saving thousands of lives worldwide. The new protein, created from parts of a toxin from the reaper spider, is described today in the Elsevier journal Vaccine.

vaccine

Reaper spiders, or brown spiders, are a family of species found all over the world that produce harmful venoms. The toxic bite of these spiders causes skin around the bite to die, and can lead to more serious effects like kidney failure and haemorrhaging. These Loxosceles spiders are most prevalent in Brazil, where they cause almost 7,000 human accidents every year.

The new study describes an engineered protein made of three pieces of a venom toxin from the Loxosceles intermedia spider. The engineered protein is not itself toxic, and gives effective protection against the effects of the pure spider venom in animal models.

“In Brazil we see thousands of cases of people being bitten by Loxosceles spiders, and the bites can have very serious side-effects,” said Dr. Chávez-Olortegui, corresponding author of the study. “Existing anti-venoms are made of the pure toxins and can be harmful to people who take them. We wanted to develop a new way of protecting people from the effects of these spider bites, without having to suffer from side-effects.”

Current approaches to protecting against venom involve giving the venom to animals, and taking the resulting antibodies for the serum. These antibodies enable the human immune system to prepare to neutralize venom from bites. Although they are somewhat effective, the production of anti-venoms like these is problematic because animals are required to produce them, and these animals suffer from the effects of the venom.

The new protein is engineered in the lab, without the need for the venomous animals. It is made up of three proteins, so it can protect against more than one kind of toxin at a time. The protein is not harmful to the immunized animal that produces the antibodies. It is also more effective than existing approaches, and easier to produce than preparing crude venom from spiders.

“It’s not easy taking venom from a spider, a snake or any other kind of venomous animal,” said Chávez-Olortegui. “With our new method, we would be able to engineer the proteins in the lab without having to isolate whole toxins from venom. This makes the whole process much safer.”

The researchers tested their new protein on rabbits: all immunized animals showed an immune response similar to the way they respond to the whole toxin. The engineered protein was effective for venom of the L. intermedia and L. gaucho sub-species, which have similar toxins. Immunized rabbits were protected from skin damage at the site of venom injection, and from haemorrhaging.

This engineered protein may be a promising candidate for therapeutic serum development or vaccination in the future.

Story Source:

The above story is reprinted from materials provided by Elsevier, via AlphaGalileo.

Tags: Bioengineered vaccinesBioengineering
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.