• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 2, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Beauty in imperfection: How crystal defects can help convert waste heat into electricity

Bioengineer by Bioengineer
January 26, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists clarify how crystal defects in Ni-based alloys give rise to high thermoelectric conversion efficiencies, advancing thermoelectric technology

IMAGE

Credit: Photo courtesy: Hidetoshi Miyazaki from Nagoya Institute of Technology

If we are to prevent the impending environmental crisis, it is imperative that we find efficient and sustainable ways to avoid being wasteful. One area with much room for improvement is the recycling of waste heat from industrial processes and technological devices into electricity. Thermoelectric materials are at the core of research in this field because they allow for clean power generation at little cost.

For thermoelectric materials to be used in vastly different fields such as steel works and transportation, they need to be able to operate in both high and low temperature regimes. In this regard, “half-Heusler Ni-based alloys” are currently under the spotlight thanks to their attractive thermoelectric efficiency, mechanical strength, and durability. Though much effort has been devoted to understanding and improving upon these peculiar alloys, scientists have found it difficult to clarify why half-Heusler Ni-based alloys have such a high conversion efficiency. Some have theorized that defects in the material’s crystal structure increase its thermal conductivity and, in turn, its conversion efficiency. However, the crystal structure around the defects is unknown and so are their specific contributions.

In a recent study published in Scientific Reports, a team of scientists from Japan and Turkey, led by Associate Professor Hidetoshi Miyazaki from Nagoya Institute of Technology, Japan, have now attempted to make this issue crystal clear! Their research combined theoretical and experimental analyses in the form of large-scale crystal structure simulations and X?ray absorption fine structure (XAFS) spectra on NiZrSn alloys.

Using these techniques, the team first calculated the structural effects that an additional Ni atom (defect) would have in the arrangement of NiZrSn crystals. Then, they verified the theoretical predictions through different types of XAFS measurements, as Dr. Miyazaki explains, “In our theoretical framework, we assumed crystal lattice distortions to be a consequence of atomic defects to perform first-principles band structure calculations. XAFS made it possible to obtain detailed information on the local crystal structure around atomic defects by comparing the experimental and theoretical spectra of the crystal structure.” These observations allowed the scientists to accurately quantify the strain that Ni defects cause in nearby atoms. They also analyzed the mechanisms by which these alterations give rise to a higher thermal conductivity (and conversion efficiency).

The results of this study will be crucial in advancing thermoelectric technology, as Dr. Miyazaki remarks: “We expect that our results will contribute to the development of a strategy centered around controlling the strain around defective atoms, which in turn will allow us to engineer new and better thermoelectric materials.” Hopefully, this will lead to a leap in thermoelectric conversion technology and hasten the transition to a less wasteful, decarbonized society–one in which excess heat is not simply discarded but instead recovered as an energy source.

On a final note, Dr. Miyazaki highlights that the techniques used to observe fine changes in strain in crystalline structures can be readily adapted to other types of material, such as those intended for spintronic applications and catalysts.

There is certainly much to gain from going after the fine details in materials science, and we can rest assured that this study marks a step in the right direction toward a better future!

###

Media Contact
Azusa Yabugami
[email protected]

Original Source

https://www.nitech.ac.jp/eng/news/2021/8700.html

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-76554-9

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Coffee for the birds: connecting bird-watchers with shade-grown coffee

March 2, 2021
IMAGE

2nd window ICG predicts gross-total resection/progression-free survival in brain metastasis

March 2, 2021

Tissue, scaffold technologies provide new options for breast cancer, other diseases

March 2, 2021

A materials science approach to combating coronavirus

March 2, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    653 shares
    Share 261 Tweet 163
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

BiologyCell BiologyChemistry/Physics/Materials SciencesTechnology/Engineering/Computer ScienceMaterialsGeneticsPublic HealthClimate ChangeEcology/EnvironmentcancerInfectious/Emerging DiseasesMedicine/Health

Recent Posts

  • Coffee for the birds: connecting bird-watchers with shade-grown coffee
  • 2nd window ICG predicts gross-total resection/progression-free survival in brain metastasis
  • Tissue, scaffold technologies provide new options for breast cancer, other diseases
  • A materials science approach to combating coronavirus
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In