• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

As climate changes, small increases in rainfall may cause widespread road outages

Bioengineer by Bioengineer
May 8, 2019
in Science
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New model incorporates topographical data for more accurate forecast of road disruption

TROY, N.Y. — As more rain falls on a warming planet, a new computer model shows that it may not take a downpour to cause widespread disruption of road networks. The model combined data on road networks with the hills and valleys of topography to reveal “tipping points” at which even small localized increases in rain cause widespread road outages.

The findings, which were tested using data from the impact of Hurricane Harvey on the Houston area, were published today in Nature Communications.

“To prepare for climate change, we have to know where flooding leads to the biggest disruptions in transportation routes. Network science typically points to the biggest interactions, or the most heavily traveled routes. That’s not what we see here,” said Jianxi Gao, an assistant professor of computer science at Rensselaer Polytechnic Institute, and lead author of the study. “A little bit of flood-induced damage can cause abrupt widespread failures.”

Gao, a network scientist, worked with environmental scientists at Beijing Normal University and a physicist at Boston University to reconcile traditional network science models that predict how specific disruptions impact a road network with environmental science models that predict how topography influences flooding. Traditional network science predicts continuous levels of damage, in which case knocking out minor roads or intersections would cause only minor damage to the network. But because of how water flows over land, adding topographical information yields a more accurate prediction.

In Florida, an increase from 30mm to 35mm of rainfall knocked out 50 percent of the road network. And in New York, Gao found that runoff greater than 45mm isolated the northeastern part of the state from the interior of the United States.

In the Hunan province of China, an increase from 25mm to 30mm of rainfall knocked out 42 percent of the provincial road network. In the Sichuan province, an increase from 95mm to 100mm in rainfall knock out 48.7 percent of the provincial road network. And overall, and an increase from 160mm to 165mm of rainfall knocked out 17.3 percent of road network in China and abruptly isolated the western part of mainland China.

The researchers validated their model by comparing predicted results with observed road outages in Houston and South East Texas caused by Hurricane Harvey. Their model predicted 90.6 percent of reported road closures and 94.1 percent of reported flooded streets.

“We cracked the data. Hurricane Harvey caused some of the most extensive road outages in U.S. history, and our model predicted that damage,” Gao said. “Adding 3D information causes more unusual failure patterns than we expected, but now we have developed the mathematical equations to predict those patterns.”

###

Gao was joined in the research by Weiping Wang and Saini Yang of Beijing Normal University, and H. Eugene Stanley of Boston University. At Rensselaer, the research was funded by the Office of Naval Research, and a grant from the Knowledge and Innovation Program at Rensselaer.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America’s first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Media Contact
Reeve Hamilton
[email protected]

Tags: Civil EngineeringClimate ChangeComputer ScienceGeographyMultimedia/Networking/Interface DesignTechnology/Engineering/Computer ScienceTheory/Design
Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In