• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

An artificial heart containing miniaturised space technology will soon beat inside a person

Bioengineer by Bioengineer
December 9, 2013
in Bioengineering, Bionic Engineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An artificial heart containing miniaturised space technology will soon beat inside a person, having now been approved for human trials in France.

An artificial heart containing miniaturised space technology will soon beat inside a person

With heart disease killing over 100 million people in developed countries alone and the demand for transplants far exceeding donations, creating a totally artificial heart has been the holy grail of cardiovascular medicine for half a century.

Brainchild of the visionary cardiac surgeon, Professor Alain Carpentier, the prosthetic is the result of 15 years of collaboration with aerospace giant Astrium, the space subsidiary of EADS. In 2008, with support from the French Government and investors, Prof. Carpentier founded the EADS spin-off company, Carmat, to complete the work.

Combining the unique expertise of Prof. Carpentier, known worldwide for inventing today’s most used heart valves, with Astrium’s experience in building satellites, Carmat produced their first completely artificial heart earlier this year.

It turned out that space had the ingredients that Carmat needed. Working closely with satellite engineers, the company applied Astrium’s expertise in building spacecraft to guarantee the necessary precision and durability for an artificial human organ like a heart.

Fashioned in part from biological tissue and in part from miniature satellite equipment, the device combines the latest advances in medicine, biology, electronics and materials science to imitate a real heart.

The team had to build a device that could withstand the tough conditions of the body’s circulatory system and pump 35 million times per year for at least five years without fail. They needed the ultimate in reliability, and the answer came from design methodologies, testing strategies and know-how for the electronics on satellites.

“Space and the inside of your body have a lot in common,” says Matthieu Dollon, Head of Business Development in Astrium’s French Elancourt Equipment team, who are working closely with Carmat on the heart.

“They both present harsh and inaccessible environments.”

Telecom satellites are built to last 15 years on their own in space, 36 000 km above Earth. The heart might be closer than a satellite but it is just as inaccessible.

“Failure in space is not an option.Nor is onsite maintenance. If a part breaks down, we cannot simply go and fix it. It’s the same inside the body.”

Equally, space engineers tolerate no interruptions or bugs in their electronics. Team member Dung Vo-Quoc, who designed some of the vital electronics for the heart, points out: “If your satellite stops working during the final penalty of the football world cup it’s disappointing. But if a heart stops beating for five seconds, it’s fatal.

“We try hard to make sure that every single part will function as planned for the duration of the device.”

Story Source:

The above story is based on materials provided by The European Space Agency (ESA).

Share14Tweet9Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Uncover Crucial Survival Mechanism in Soybeans Amid Heat and Drought

Researchers at Children’s Hospital of Philadelphia Identify Concussion-Related Vision Disorders Using Eye Tracking Metrics

Western Biologists Uncover Long-Standing Mystery Behind Cricket Song Mechanism

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.