• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Artificial blood vessels grown from stem cells

Bioengineer by Bioengineer
September 18, 2013
in Bioengineering
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Artificial blood vessels which can survive in the body for up to nine months have been created from stem cells by scientists.

Networks of blood vessels derived from human cells were grown on the surface of mouse brains, where they worked as well as natural vessels for up to nine months.

Previous studies using similar methods had failed to produce blood vessels which were durable and long-lasting when grown in animals.

Being able to repair or grow new blood vessels could form the basis of new treatments for conditions such as heart disease and diabetes, researchers said.

Writing in the Proceedings of the National Academy of Sciences journal, researchers described how a type of human stem cell was used to create “vascular precursor cells”, which in turn form blood vessels.
After being implanted onto the surface of mice’s brains, the cells formed into functioning blood vessels within two weeks, and continued to work for up to 280 days.

Similar cells implanted under the skin rather than on the brain also produced blood vessels, but these were shorter-lived and required five times more precursor cells to produce, researchers reported.

Dr Rakesh Jain of Massachusetts General Hospital, who led the study, said: “Our team has developed an efficient method to generate vascular precursor cells from human iPScs and used them to create networks of engineered blood vessels in living mice.

Stem cell technology “has brought enormous potential to the field of cell-based regenerative medicine”, but “the challenge of deriving functional cells from these iPScs still remains,” he added.

Story Source:

The above story is reprinted from materials provided by Telegraph, Nick Collins, Science Correspondent.

Share12Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Green Corrosion Inhibitor for Aluminum 5086 Explored

Undergraduates Evaluate AI Responses on Drug Interactions

Comparing Self-Reports and GP Records on Falls

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.